Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Mechanical and Electrical Engineering     
Magnetic driving method of inspection robot for HVDC transmission lines
XU Xian jin, WU Long hui, YANG Xiao jun, TANG Liang, YANG Yong feng
College of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
Download:   PDF(2485KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new magnetic driving method was introduced in order to eliminate slippage problem of wheel-arm-structured inspection robot for high voltage direct current (HVDC) transmission. Ampere force caused by HVDC magnetic field was used as driving force, replacing motor-driven wheel-rail driving power, so as to completely resolve the slippage problem. The physical model to achieve magnetic driving force was established by analyzing the magnetic properties around the HVDC transmission lines and the demand of robot driving force. The relationship between driving force and the model size as well as the number of coil turns was analyzed. A magnetic force method was proposed to counteract the transverse wind. The calculated magnetic driving force was compared with the simulation data of COMSOL software. Results reveal that the proposed method of magnetic driving is theoretically correct. A unit of magnetic driving on the basis of the model was built. Experimental results prove that the proposed method of magnetic driving is practically feasible.



Published: 28 October 2016
CLC:  TP 242  
Cite this article:

XU Xian jin, WU Long hui, YANG Xiao jun, TANG Liang, YANG Yong feng. Magnetic driving method of inspection robot for HVDC transmission lines. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1937-1945.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.10.013     OR     http://www.zjujournals.com/eng/Y2016/V50/I10/1937


高压直流巡检机器人的磁力驱动方法

 针对架空高压输电线路轮臂式巡检机器人易打滑问题,提出基于高压直流磁场的磁力驱动方法.利用载流线圈在高压直流磁场中受到的安培力作为牵引机器人移动的驱动力,取代以电机驱动的轮轨式移动方式,从而彻底消除打滑问题.根据高压直流输电线路周围的磁场特性和对机器人驱动力的要求,建立实现磁力驱动力的物理模型,分析磁力驱动力与物理模型尺寸及线圈匝数之间的关系,提出利用磁场力来平衡横风力矩的方法.利用COMSOL软件对磁力驱动模型进行仿真,将磁力驱动力的仿真结果与理论计算值进行比较分析.结果表明,提出的磁力驱动方法理论上是正确的.依据提出的磁力驱动模型建立磁力驱动装置并进行实验,实验结果表明,提出的磁力驱动方法在技术上是可行的.

[1] 张运楚,梁自泽,傅思遥,等.基于结构约束的架空输电线路巡线机器人障碍识别[J].机器人,2007,29(1) : 16 .
ZHANG Yunchu, LIANG Zize, FU Siyao, et al. Structureconstrained obstacle recognition for transmission line inspection robot [J]. Robot, 2007, 29(1): 16.
[2] 王鹏,刘锋,梅生伟,等.高压输电线巡线机器人控制体系构建及动作控制器设计[J].清华大学学报:自然科学版,2011,51(7): 921-927.
WANG Peng, LIU Feng, MEI Shengwei, et al. Control structure establishment and control method design for highvoltage (HV)power transmission lines inspection robot [J]. Journal of Tsinghua University: Science and Technology, 2011,51(7): 921-927.
[3] 周风余,吴爱国,李贻斌,等.高压架空输电线路自动巡线机器人的研制[J].电力系统自动化,2004,28(23): 89-91.
ZHOU Fengyu, WU Aiguo, LI Yibin, et al. Development of mobile robot for inspection of high voltageoverhead power transmission lines [J]. Automation of Electric Power Systems, 2004, 28(23): 89-91.
[4] POULIOT N, MONTAMBAULT S. Geometric design of the LineScout, a teleoperated robot for power line inspection and maintenance [C]∥IEEE International Conference on Robotics and Automation. Pasadena: IEEE, 2008: 3970-3977.
[5] MONTAMBAULT S, POULIOT N. Design and validation of a mobile robot for power line inspection and maintenance [C]∥6th International Conference on FieldandService RoboticsFSR2007. Chamonix: Springer, 2008: 495-504.
[6] DEBENEST P. Explinerrobot for inspection of transmission lines [C]∥IEEE International Conference on Robotics and Automation. Pasadena: IEEE, 2008:3978-3984.
[7] 吴功平,肖晓晖,肖华,等.架空高压输电线路巡线机器人样机研制[J].电力系统自动化,2006,30(13): 90-107.
WU Gongping, XIAO Xiaohui, XIAO Hua, et al.Development of a mobile inspectiom robot for high voltage power transmission line [J]. Automation of Electric Power Systems, 2006, 30(13): 90-107.
[8] 郑拓,吴功平,严宇,等. 高压线巡检机器人巡检与通讯系统设计与实现[J].武汉大学学报: 工学版,2012,45(2): 235-240.
ZHENG Tuo, WU Gongping, YAN Yu, et al.Inspection and communication system of robot for
highvoltage transmission lines [J]. Engineering Journal of Wuhan University, 2012, 45(2): 235-240.
[9] 程建峰,苏晓峰.磁悬浮列车的发展及应用[J]. 铁道车辆,2003, 41(11): 13-17.
CHENG Jianfeng, SU Xiaofeng. Development and application of magnetic levitation trains [J]. Rolling Stock, 2003, 41(11): 13-17.
[10] 陈强,李晓龙,刘少克.磁悬浮列车悬浮系统的非线性PID控制[J].机车电传动,2014(01): 52-54.
CHEN Qiang, LI Xiaolong, LIU Shaoke. Nonlinear PID controller for the magnetic levitation system [J]. Electric Drive for Locomotives, 2014(01): 5254.
[11] 唐苏亚.直线电机驱动的磁悬浮列车的研究开发概况[J].微电机,2003,36(04): 51-55.
TANG Suya. The research and development overview of Maglev linear motordriven [J]. MicroMotor, 2003, 36(04): 51-55.
[12] 陈特放,邓江明,唐建湘,等.磁浮直线电机的分段最大加速度跟踪控制[J].控制工程,2015,22(1): 813.
CHEN Tefang, DENG Jiangming, TANG Jianxiang, et al. Break maglev linear motor maximum acceleration tracking control [J]. Control Engineering, 2015, 22(1): 813.
[13] 郝阳,王中阳,杨敏,等.800kV特高压直流输电线路极间距离优化研究[J].电网与清洁能源,2012,28(01): 49-53.
HAO Yang, WANG Zhongyang, YANG Min, et al. Research optimization of space between polar conductor for 800kV UHVDC transmission line [J]. Power System and Clean Energy, 2012, 28(01): 49-53.

[1] GAO De-dong, LI Qiang, LEI Yong, XU Fei, BAI Hui-quan. Geometric approximation approach based research on kinematics of bevel-tip flexible needles[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 706-713.
[2] TANG Zhi-dong, YUN Chao. Quick action coupling technology in full-automatic quick coupling device: a review[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(3): 461-470.
[3] ZHANG Yong tao, SONG Zhi wei, WANG Yi, NIAN Shan po. Robot position and rotation calibration method based on precision of spatial mesh[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1980-1986.
[4] JIA Song min, LU Ying bin, WANG Li jia, LI Xiu zhi, XU Tao. Mobile robot human tracking using hierarchical features[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(9): 1677-1683.
[5] ZHU Yu shi, YANG Can jun, WU Shi jun, XU Xiao le, ZHOU Pu zhe, SHAN Xin. Steering performance of underwater glider in water column monitoring[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(9): 1637-1645.
[6] LIU Ya nan, NI He peng, ZHANG Cheng rui WANG Yun fei; SUN Hao chun. PC-based open control platform design of integration of machine vision and motion control[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1381-1386.
[7] DING Xia qing, DU Zhuo yang, LU Yi qing, LIU Shan. Visual trajectory planning for mobile robots based on hybrid artificial potential field[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1298-1306.
[8] ZHANG A long, ZHANG Ming, QIAO Ming jie, ZHU Wei dong, MEI Biao. Base frame calibration of circumferential splice drilling system based on visual measurement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1080-1087.
[9] JIANG Wen ting, GONG Xiao jin, LIU Ji lin. Incremental large scale dense semantic mapping[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 385-391.
[10] HUANG Qi wei, ZHANG Ming, QU Wei wei, LU Xian gang, KE Ying lin. Posture optimization and smoothness for robot drilling[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2261-2268.
[11] LI Wei, ZHAO Zhi gang, SHI Guang tian, MENG Jia dong. Solutions of kinematics and dynamics for parallel cable driven system with multi robots[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1916-1923.
[12] MA Zi ang, XIANG Zhi yu. Calibration and 3D reconstruction with omnidirectional ranging by optic flow camera[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(9): 1651-1657.
[13] HE Xue-jun, WANG Jin, LU Guo-dong, CHEN Li.
Optimization of robot image drawing sequence based on ant colony algorithm
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(6): 1139-1145.
[14] YUAN Kang-zheng, ZHU Wei-dong, CHEN Lei, XUE Lei, QI Wen-gang. Approach for calibrating position of displacement sensor mounted on robot end-effector[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 829-834.
[15] FU Xing-wei, WU Gong-ping, ZHOU Peng, YU Na. Energy-consumption estimation of inspection robot based on Kalman filter[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(4): 670-675.