Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Mechanical Engineering     
Base frame calibration of circumferential splice drilling system based on visual measurement
ZHANG A long, ZHANG Ming, QIAO Ming jie, ZHU Wei dong, MEI Biao
1. Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China;
2. AVIC Xi’an Aircraft Industry (Group) Co. Ltd, Xi’an 710089, China
Download:   PDF(1940KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

 A new base frame calibration method based on visual measurement was proposed and demonstrated in order to improve the positioning accuracy of the circumferential splice drilling system after automatic stepping process, and to eliminate the impact of errors caused by manufacturing, assembly, installation and motion. By establishing the kinematic model and handeye relationship of the system, a coordinate system of the equipment from base to camera was set up, which determined the visual measurement principle. With this principle, some prefabricated benchmark holes were measured and the relationship between actual base frame and theoretical aircraft coordinate systems could be achieved by using holematching method based on LevenbergMarquardt least squares fitting algorithm. Experimental results show that the proposed base frame calibration method based on visual measurement could achieve the accuracy within 2 mm, which totally meets the requirement of base frame calibration. The results also reveal correctness and convenience of the proposed method.



Published: 01 June 2016
CLC:  TP 242.3  
Cite this article:

ZHANG A long, ZHANG Ming, QIAO Ming jie, ZHU Wei dong, MEI Biao. Base frame calibration of circumferential splice drilling system based on visual measurement. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1080-1087.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008973X.2016.06.010     OR     http://www.zjujournals.com/eng/Y2016/V50/I6/1080


基于视觉测量的环形轨底座位姿标定方法

为了提高环形轨道制孔系统转站之后的定位精度,消除由制造、装配、安装以及运动误差对其造成的影响,提出基于视觉测量的环形轨道制孔系统底座位姿标定方法.针对环形轨道制孔系统进行几何建模并确立手眼关系,建立从底座坐标系到相机坐标系的坐标系系统,论述视觉测量原理.通过对预制基准孔进行测量,并结合基于LevenbergMarquardt最小二乘算法的孔位匹配方法,确定实际底座坐标系与理论飞机坐标系之间的关系,完成环形轨道制孔系统的底座坐标系位姿标定.实验结果表明:基于视觉测量的底座坐标系位姿标定方法,误差小于2 mm,成本低廉、操作简单且完全满足底座坐标系位姿标定要求.

[1] 王彬.飞机大部件数字化自动对接装配技术研究[J].航空工程进展,2013,4(1): 134-138.
WANG Bin. Research on digital automatic docking assembly technology of aircraft structural parts [J]. Advances in Aeronautical Science and Engineering, 2013,4(1): 134-138.
[2] 卜泳,许国康,肖庆东.飞机结构件的自动化精密制孔技术 [J]. 航空制造技术,2009(24): 61-64.
BU Yong, XU Guokang, XIAO Qingdong. Automatic precision drilling technology of aircraft structural part [J]. Aeronautical Manufacturing Technology, 2009(24): 61-64.
[3] DEVLIEG R. Expanding the use of robotics in airframe assembly via accurate robot technology[J]. SAE International Journal of Aerospace, 2010, 3(1): 198-203.
[4] DEVLIEG R, SITTON K, FEIKERT E, et.al. ONCE (Onesided Cell End effector) robotic drilling system \[J\]. SAE Technical Paper, 2002(1): 2626.
[5] ATKINSON J, HARTMANN J, JONES S, et al. Robotic drilling system for 737 aileron \[J\]. SAE Technical Paper, 2007: 0138-21.
[6] OLSSON T, HAAGE M, KIHLMAN H, et.al. Costefficient drilling using industrial robots with highbandwidth force feedback\[J\]. Robotics ComputerIntegrated Manufacturing, 2010, 26(1): 24-38.
[7] DEVLIEG R. Highaccuracy robotic drilling/milling of 737 [J]. Society of Automotive Engineers, 2011, 4(2): 1373-1379.
[8] ZHU W D, MEI B, KE Y L. Inverse kinematics solution of a new circumferential drilling machine for aircraft assembly [J]. Robotica, 2014, 34(1): 120.
[9] ZHU W D, MEI B, KE Y L. Kinematic modeling and parameter identification p of a new circumferential drilling machine for aircraft assembly [J]. International Journal of Advanced Manufacturing Technology, 2014, 72(58): 1143-1158.
[10] 费少华,方强,孟祥磊,等. 基于压脚位移补偿的机器人制孔锪窝深度控制[J]. 浙江大学学报:工学版,2012,46(7): 1157-1161.
FEI Shaohua, FANG Qiang, MENG Xianglei, et.al. Countersink depth control of robot drilling based on pressure foot displacement compensation [J]. Journal of Zhejiang University: Engineering Science, 2012, 46(7): 1157-1161.
[11] ZHU W D, MEI B, YAN G R, et.al. Measurement error analysis and accuracy enhancement of 2D vision system for robotic drilling [J]. Robotics and ComputerIntegrated Manufacturing, 2014, 30(2): 160-171.
[12] ZHU W D, QU W W, CAO L H, et.al. An offline programming system for robotic drilling in aerospace manufacturing [J]. International Journal of Advanced Manufacturing Technology, 2013, 68(912): 2535-2545.
[13] MADSEN K, NIELSEN H B, TINGLEFF O. Methods for nonlinear least squares problems [J]. Siam Journal on Optimization, 2004, 16(1): 487-490.
[14] 张鸿燕,耿征. LevenbergMarquardt算法的一种新解释 [J]. 计算机工程与应用,2009,45(19): 58.
ZHANG Hongyan, GENG Zheng. Novel interpretation for LevernbergMarquardt algorithm [J]. Computer Engineering and Application. 2009, 45(19): 58.
[15] MA C F, JIANG L H. Some research on LevenbergMarquardt method for the nonlinear equations [J]. Applied Mathematics and Computation, 2007, 184(2): 1032-1040.

[1] ZHONG Qiu-bo , PIAO Song-hao, GAO Chao, HONG Bing-rong. Gait planning for humanoid robot based on hybrid
evolutionary algorithm
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(5): 893-898.