Please wait a minute...
J4  2011, Vol. 45 Issue (11): 1895-1899    DOI: 10.3785/j.issn.1008-973X.2011.11.002
    
Noise reduction on sample responses of Hénon-Heiles
system subjected to bounded noise excitation
WANG Yue-hua1, GAN Chun-biao1, YANG Shi-xi1,LEI Hua2
1.Department of Mechanical Engineering,Zhejiang University,Hangzhou 310027, China;
2. Department of Mechanics,Zhejiang University,Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A customary algorithm on noise reduction has been developed to explore the characteristics of the reconstructed orbits and their corresponding largest Lyapunov exponents in the Hénon-Heiles system. It is shown that the developed algorithm is more effective to deal with the chaotic attractor with measurement noise in the Hénon map, and the reconstructed phase portraits can open out the intrinsic dynamics in the original deterministic Hénon-Heiles system by the developed algorithm, though the sample responses may escape far away from the noiseless orbits. Hence, the developed algorithm can be applied to extract the features of chaotic orbits from the irregular output signals. Moreover, when dynamical noise is inevitable, moderately increasing the strength of the dynamical noise is recommendable to identify the irregular signals in some cases.



Published: 08 December 2011
CLC:  TH 113.1  
Cite this article:

WANG Yue-hua, GAN Chun-biao, YANG Shi-xi,LEI Hua. Noise reduction on sample responses of Hénon-Heiles
system subjected to bounded noise excitation. J4, 2011, 45(11): 1895-1899.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2011.11.002     OR     https://www.zjujournals.com/eng/Y2011/V45/I11/1895


有界噪声激励下Hénon-Heiles系统响应的降噪分析

针对有界噪声激励下Hénon-Heiles系统响应的杂乱特性,通过改进一类降噪算法,给出经降噪算法处理后响应的重构特征及相应最大Lyapunov指数.结果表明:经改进后的算法在处理Hénon映射的含测量噪声的混沌吸引子时更为有效;有界噪声激励使Hénon-Heiles系统的样本响应远离无噪声时的确定轨迹,但经过改进的降噪算法处理后的重构相图能体现出确定情形下系统的固有特性;可利用这一改进算法对杂乱输出信号进行混沌特征提取与分析;在系统无法避免噪声激励干扰的情况下,主动地适度增加随机激励的强度可能会得到更好的混沌特性识别效果.

[1] WANG J, SUN L, FEI X Y. Chaos analysis of the electrical signal time series evoked by acupuncture [J]. Chaos, Solitons&Fractals, 2007, 33(3): 901-907.
[2] 陈铿,韩伯棠.混沌时间序列分析中的相空间重构技术综述[J].计算机科学,2005,32(4):67-70.
CHEN Keng, HAN Botang. A survey of state space reconstruction of chaotic time series analysis [J]. Computer Science, 2005,32(4):67-70.
[3] DULAKSHI S K, KARUNASINGHE, LIONG S Y. Chaotic time series prediction with global model: Artificial neural network [J]. Journal of Hydrology, 2006, 323(1/4):92-105.
[4] SPROTT J C. Chaos and Time Series Analysis [M]. Oxford,UK: Oxford University Press, 2004:243-271.
[5] 韩敏,刘玉花,史志伟,等. 改进局部投影算法的混沌降噪研究[J].系统工程与电子技术, 2005,27(5):799-802.
HAN Min, LIU Yuhua, SHI Zhiwei, et al. Application of nonlinear local average algorithm in chaotic noise reduction [J]. Systems Engineering and Electronics, 2005, 27(5): 799-802.
[6] 刘元峰, 赵玫. 基于奇异谱分析的降噪方法及其在计算最大Lyapunov指数中的应用[J]. 应用数学和力学, 2005, 26(2):163-168.
LIU Yuanfeng, ZHAO Mei. Denoising method based on singular spectrum analysis and its applications in calculation of maximal Lyapunov exponent [J]. Applied Mathematics and Mechanics, 2005, 26(2):163-168.
[7] ALONSO F J, DELCASTILLO J M, PINTADO P. Application of singular spectrum analysis to the smoothing of raw kinematic signals [J]. Journal of Biomechanics, 2005,38:1085-1092.
[8] EOM I E, KIM Y S, Waveletbase denoising with nearly arbitrarily shaped windows [J]. Signal Processing Letters, IEEE, 2004,11(12):937-940.
[9] 韩敏. 混沌时间序列预测理论与方法[M]. 大连:中国水利水电出版社, 2007: 103-115.
[10] KANTZ H, SCHREIBER T. Nonlinear Time Series Analysis [M]. Cambridge,UK: Cambridge University Press, 1999:30-43.
[11] SMALL M, TSE C K. Optimal embedding parameters: a modeling paradigm [J]. Physica D: Nonlinear Phenomena , 2004,194(3/4): 283-296.
[12] KIM H S, EYKHOLT R, SALAS J D. Nonlinear dynamics, delay times, and embedding windows [J]. Physica D, 1999, 127: 48-60.
[13] AGUIRRE J, VALLEJO J C, SANJUAN M A F. Wada basins and chaotic invariant sets in the HénonHeiles system [J]. Physical Review E, 2001, 64: 066208-1-11.
[14] SEOANE J M, Aguirre J, SANJUAN M A F. Basin topology in dissipative scattering [J]. Chaos, 2006, 16: 023101-1-8.
[15] ADELOYE A B, AKALA A O. Recurrent and nonrecurrent trajectories in a chaotic system [J]. LatinAmerican Journal of Physics Education,2010, 4: 598-602.
[16] GAN C B. Noiseinduced chaos and basin erosion in softening Duffing oscillator [J]. Chaos, Solitons & Fractals, 2005, 25:1069-1081.
[17] SHANG P J, XU N, SANTI K, Chaotic analysis of time series in the sediment transport phenomenon [J]. Chaos, Solitons & Fractals, 2009, 41:368-379.

No related articles found!