Please wait a minute...
J4  2010, Vol. 44 Issue (6): 1143-1148    DOI: 10.3785/j.issn.1008-973X.2010.06.017
    
Experimental study of influencing factors on transmissivity of SiO2 nanofluids
WANG Hui, LUO Zhong-yang, CAI Jie-cong, WANG Tao,
ZHAO Jia-fei, NI Ming-jiang
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

High performance nanofluids were produced by a microfluidizer, and a spectrophotometer basing the integral ball principle was used to measure the transmissivity of SiO2 nanofluids in total solar irradiance band with various particle sizes, volume fraction and optical path. By analyzing the experimental results, it was observed that the physical characteristics of nanofluids such as particle sizes, volume fraction and optical path would affect the transmissivity of SiO2 nanofluids. The measurement of the transmissivity of SiO2 nanofluids with different optical path was realized by using different thick sample pools. The results indicated that the transmissivity variation of the 7 nm SiO2 nanofluids with the different optical paths obeyed the LabbertBeer law, however, not happened when the diameter was 40 nm for particle dispersion.



Published: 16 July 2010
CLC:     
  TK 121  
Cite this article:

WANG Hui, JIA Zhong-Yang, CA Ji-Cong, WANG Chao, DIAO Jia-Fei, NI Meng-Jiang. Experimental study of influencing factors on transmissivity of SiO2 nanofluids. J4, 2010, 44(6): 1143-1148.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2010.06.017     OR     http://www.zjujournals.com/eng/Y2010/V44/I6/1143


SiO2纳米流体透射率影响因素实验研究

利用高压微射流法制备了多种SiO2纳米流体,并用分光光度计结合积分球原理测试了不同粒径、不同体积分数及不同光程下SiO2纳米流体在太阳能辐射全波段的透射率.比较实验结果发现,SiO2纳米流体的颗粒粒径,以及其体积分数的不同对纳米流体的透射率有不同程度的影响.通过定制不同厚度的样品池,测试不同光程下SiO2纳米流体的透射率.实验发现:7 nm SiO2纳米流体的透射率随光程的变化仍符合朗伯比尔定律,而40 nm SiO2纳米流体由于颗粒散射加剧导致结果偏离朗伯比尔定律.

[1]  CHOI S U S. Enhancing thermal conductivity of fluids with nanoparticles [J]. Developments and Applications of NonNewtonian Flows, 1995, 231: 99105.

[2] XUAN Y M, LI Q. Heat transfer enhancement of nanofluids [J]. International Journal of Heat Fluid flow, 2000, 21(1): 5864.

[3] 李新芳,朱冬生.纳米流体传热性能研究进展与问题[J].化工进展,2006,25(8): 875879.

LI Xinfang, ZHU Dongsheng. Research progress and problems of heattransfer properties of nanofluids [J]. Chemical Industry and Engineering Progress, 2006, 25 (8): 875879.

[4] 朱冬生,吴淑英,李新芳,等.纳米流体工质的基础研究及其蓄冷应用前景[J].化工进展,2008,27(6): 857860.

ZHU Dongsheng, WU Shuying, LI Xinfang, et al. Fundamental investigation and application prospect of cool storage of nanofluids [J]. Chemical Industry and Engineering Progress, 2008 27(6): 857860.

[5] LI Xinfang, ZHU Dongsheng, WANG Xianju, et al. Influence of CTAB on stability of copper nanosuspensions[C]∥ Proceedings of the International Symposium on Biophotonics, Nanophotonics and Metal Materials. Hangzhou, China, 2006: 363366.

[6] LI C H, PETERSON G P. Experimental investigation of temperature and volume of ration variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids) [J]. Journal of Applied Physics, 2006, 99 (8): 08431410843148.

[7] MURSHED S M S, LEONG K C, YANG C. Enhanced thermal conductivity of TiO2water based nanofluids [J]. International Journal of Thermal Sciences, 2005, 44 (4): 367373.

[8] 林璟,方利国.纳米流体强化传热技术及其应用新进展[J].化工展,2008,27(4): 488494.

LIN Cong, FANG Liguo. Recent progress of technology and application of heat transfer enhancement of nanofuilds [J]. Chemical Industry and Engineering Progress, 2008, 27(4): 488494.

[9] 张巧慧,朱华.新型传热工质纳米流体的研究与应用[J]. 能源工程,2006(2): 5254.

ZHANG Qiaohui, ZHU Hua. The investigations and applications of nanofluids [J]. Energy Engineering, 2006(2): 5254.

[10] TAKUYA I, HAJIME I. Radiation force induced by resonant light: from atom to nanoparticle [J]. Journal of Luminescence, 2004, 108: 351354.

[11] MANWAR H, KOICHI N. Control of water absorption and its effect on interlaminar shear strength of CFRC with Al2O3 dispersion [J]. Materials Science and Engineering A, 1999, 272: 264268.

[12] 彭小飞,俞小莉,夏立峰,等.纳米流体悬浮稳定性影响因素[J].浙江大学学报:工学报,2007,41(4): 577580.

PENG Xiaofei, YU Xiaoli, XIA Lifeng, et al. Influence factors on suspension stability of nanofluids [J]. Journal of Zhejiang University: Engineering Science, 2007,41(4): 577580.


[13] 姜未汀,丁国良,王凯建,等.一种基于透射比的纳米流体颗粒团聚定量分析方法[J].上海交通大学学报,2007,41(10): 16481652.

JIANG Weiting, DING Guoliang, WANG Kaijian, et al. A Quantitative analysis method of nanofluids particles aggregation based on transmittance [J]. Journal of Shanghai Jiao tong University, 2007,41(10): 16481652.


[14] BOHREN CF, HUFFMAN DR. Absorption and scattering of light by small particles [M]. New York: Wiley, 1983.


[15] WISCOMBE W J. Improved Mie scattering algorithms [J]. Applied Optics, 1980, 19(9): 15051509.

[1] NING Zhi-hua, HE Le-nian, HU Zhi-cheng. A high voltage high stability switching-mode controller chip[J]. J4, 2014, 48(3): 377-383.
[2] CHEN Zhao, YU Feng, CHEN Ting-ting. Log-structured even recycle strategy for flash storage[J]. J4, 2014, 48(1): 92-99.
[3] LI Lin, CHEN Jia-wang,GU Lin-yi, WANG Feng. Variable displacement distributor with valve control for axial piston pump/motor[J]. J4, 2014, 48(1): 29-34.
[4] JIANG Zhan, YAO Xiao-ming, LIN Lan-fen. Feature-based adaptive method of ontology mapping[J]. J4, 2014, 48(1): 76-84.
[5] CHEN Di-shi,ZHANG Yu , LI Ping. Ground effect modeling for small-scale unmanned helicopter[J]. J4, 2014, 48(1): 154-160.
[6] HUO Xin-xin, CHU Jin-kui,HAN Bing-feng, YAO Fei. Research on interface circuits of multiple piezoelectric generators[J]. J4, 2013, 47(11): 2038-2045.
[7] YANG Xin, XU Duan-qing, YANG Bing. A parallel computing method for irregular work[J]. J4, 2013, 47(11): 2057-2064.
[8] WANG Yu-qiang,ZHANG Kuan-di,CHEN Xiao-dong. Numerical analysis on interface behavior of
adhesive bonded steel-concrete composite beams
[J]. J4, 2013, 47(9): 1593-1598.
[9] CUI He-liang, ZHANG Dan, SHI Bin. Spatial resolution and its calibration method for Brillouin scattering based distributed sensors[J]. J4, 2013, 47(7): 1232-1237.
[10] PENG Yong, XU Xiao-jian. Numerical analysis of effect of aggregate distribution on splitting strength of asphalt mixtures[J]. J4, 2013, 47(7): 1186-1191.
[11] WU Xiao-rong, QIU Le-miao, ZHANG Shu-you, SUN Liang-feng, GUO Chuan-long. Correlated FMEA method of complex system with linguistic vagueness[J]. J4, 2013, 47(5): 782-789.
[12] JIN Bo, CHEN Cheng, LI Wei. Gait correction algorithm of hexapod walking robot
with semi-round rigid feet
[J]. J4, 2013, 47(5): 768-774.
[13] ZHONG Shi-ying, WU Xiao-jun, CAI Wu-jun, LING Dao-sheng. Development of horizontal sliding model test facility
 for footpad’s lunar soft landing
[J]. J4, 2013, 47(3): 465-471.
[14] YUAN Xing, ZHANG You-yun, ZHU Yong-sheng, HONG Jun,QI Wen-chang. Fault degree evaluation for rolling bearing combining
backward inference with forward inference
[J]. J4, 2012, 46(11): 1960-1967.
[15] YANG Fei, ZHU Zhu, GONG Xiao-jin, LIU Ji-lin. Real-time dynamic obstacle detection and tracking using 3D Lidar[J]. J4, 2012, 46(9): 1565-1571.