Please wait a minute...
J4  2010, Vol. 44 Issue (6): 1149-1154    DOI: 10.3785/j.issn.1008-973X.2010.06.018
    
Experimental and numerical study of nanofluid flow and heat transfer performance
XIAO Bao-lan1,2, YU Xiao-li1, ZHONG Xun1, HAN Song1,XIA Li-feng3
1. Power Machinery and Vehicular Engineering Institute, Zhejiang University, Hangzhou 310027, China; 2. Department of Mechanical Engineeing, City College of Zhejiang University, Hangzhou 310015, China; 3. Zhejiang Yinlun Machinery Co.Ltd, Tiantai 317200, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Threedimensional k-ε turbulence model, block-structured grid system, and fluid-solid coupling study method combined with shell conduction model were adopted to simulate the nanofluid flow and heat transfer performance under high temperature cooling condition. The nanofluid γAl2O3 PG90 was used as cooling medium in a vehicular oil cooler. Performance comparative analysis between baseliquid and nanofluid was carried out and the effect of nanoparticle volume fraction on the performance was investigated. Simultaneously, the universal applicability of the nanofluid property prediction model and the feasibility of regarding nanofluid as single phase fluid to study the performance were analyzed. Performance testrig was set up to obtain test data. Nanofluid can improve the heat transfer, contrasted with baseliquid, and the flow resistance increases slightly. Heat transfer is improved and the flow resistance increases with the increasing nanoparticle volume fraction. The property prediction model is not universal applicability and it is not feasible to regard nanofluid as single phase fluid  to study the performance when the nanoparticle volume fraction is higher than 3%. The possible reason maybe that the single fluid flow cannot reflect the interaction of more nanoparticles.



Published: 16 July 2010
CLC:  TK 402  
Cite this article:

XIAO Bao-Lan, SHU Xiao-Chi, ZHONG Xun, HAN Song, JIA Li-Feng. Experimental and numerical study of nanofluid flow and heat transfer performance. J4, 2010, 44(6): 1149-1154.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2010.06.018     OR     http://www.zjujournals.com/eng/Y2010/V44/I6/1149


纳米流体流动传热性能的实验与模拟研究

为了研究高温冷却条件下,γ-Al2O3-PG90纳米流体作为冷却介质在一车用机油冷却器内的流动传热性能,采用三维kε湍流模型,应用块结构网格生成技巧,融合流固耦合研究方法和薄壳导热模型数值模拟了纳米流体的性能,进行了基液与纳米流体的性能对比计算,分析了纳米粒子体积分数对性能的影响,考察了纳米流体物性预测模型的普适性,并研究了将纳米流体视为单相流体进行性能分析的可行性,通过实验测试得到了性能数据.研究发现:与基液相比,纳米流体强化换热效果明显,流动阻力有所增加,随着纳米粒子体积分数的增加,传热性能提高,流动阻力增加,说明该物性预测模型不能普适,当纳米粒子体积分数大于3%时,将纳米流体视为单相流体的性能研究结果与实验数据偏差较大,可能原因是单相流体流动无法反映较多的粒子之间的相互作用.

 

[1] KAYS W M, LONDON A L. Compact Heat Exchangers[M]. New York: McGrawHill, 1984.

[2] SPARROW E M, LIU C H. Heat transfer and pressure drop performance relationships for inline, staggered and continuous plate heat exchangers [J]. International Journal of Heat and Mass Transfer, 1979, 22: 16131621.

[3] HIE C K, MOO H K. Effect of strip location on the airside pressure drop and heat transfer in strip finandtube heat exchanger[J]. International Journal of Refrigeration, 1999, 22: 302312.

[4] SOMCHAI W, YUTASAK C. Effect of fin pitch and number of tube rows on the air side performance of herringbone wavy fin and tube heat exchangers[J]. Energy Conversion and Management, 2005, 46(13/14): 22162231.

[5] CHOI S U S, YU W, HULL J R, et al. Nanofluids for vehicle thermal management[C]∥Vehicle Thermal Management Systems Conference & Exhibition. Nashville: SAE, 2001.

[6] XUAN Y M, LI Q. Heat transfer enhancement of nanofluids[J]. International Journal of Heat and Fluid Flow, 2000, 21(1): 5864.

[7] EASTMAN J A, CHOI S U S, LI S, et al. Anomalously increased effective thermal conductivities of ethylene glycolbased nanofluids containing copper nanoparticles[J]. Applied Physics Letter, 2001, 78(6): 718720.

[8] MAIGA S B, PALM S J, NGUYEN C T. Heat transfer enhancement by using nanofluids in forced convection flows[J]. International Journal of Heat and Fluid Flow, 2005, 26(4): 530546.

[9] 王涛,骆仲泱,郭顺松,等,可控纳米流体的制备及热导率研究[J].浙江大学学报:工学版,2007,41(3): 514518.

WANG Tao, LUO Zhongyang, GUO Shunsong, et al. Preparation of controllable nanofluids and research on thermal conductivity[J]. Journal of Zhejiang University: Engineering Science, 2007, 41(3): 514518.

[10] DEVDATTA P K, RAVIKANTH S V, DEBENDRA K D, et al. Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant[J]. Applied Thermal Engineering, 2008, 28(14/15): 17741781.

[11] YU W, CHOI S U S. The role of interfacial layers in the enhanced thermal Conductivity of nanofluids: a renovated Maxwell model[J]. Journal of Nanoparticle Research, 2003, 5(1/2): 167171.

[12] YU W, CHOI S U S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated HmailtonCrosser model[J]. Journal of Nanoparticle Research, 2004, 6(4): 355361.

[13] WANG B X, ZHOU L P, PENG X F. Viscosity, thermal diffusivity and Prandtl number of nanoparticle suspension[J]. Progress in Natural Science, 2004, 14(10):922926.

[14] MURSHED S M S, LEONG K C, YANG C. Thermal conductivity of nanoparticle suspensions[C]∥ Proceedings of IEEE. Zhuhai: IEEE, 2006: 155158.

[15] YONGJIN F, BOMING Y, KAIMING F, et al. Thermal conductivity of nanofluids and size distribution of nanoparticles by Monte Carlo simulations[J]. Journal of Nanoparticle Research, 2008, 10: 13191328.

[16] 彭小飞.车用散热器中纳米流体高温传热基础问题研究[D].杭州:浙江大学,2007: 119123,4268.

PENG Xiaofei. Study of nanofluids heat transfer performance in high temperature condition based on vehicular cooler[D]. Hangzhou: Zhejiang University,2007: 119123,4268.

[17] YIMIN X, ROETZEL W. Conceptions for heat transfer correlation of nanofluids[J]. International Journal of Heat and Mass Transfer, 2000,43(19): 37013707.

[1] LI Yi-min,HAO Zhi-yong,DU Ji-sheng. Study of coupling dynamics between crankshaft and
timing drive system of engine
[J]. J4, 2013, 47(9): 1650-1657.
[2] LIU Lian-yun, HAO Zhi-yong, QIAN Xin-yi. Simulation methods for acoustical characteristics of
air-cleaner filter element
[J]. J4, 2012, 46(10): 1784-1789.
[3] LI Yi-min, HAO Zhi-yong, YE Hui-fei. Dynamic characteristic analysis of diesel timing gear trains[J]. J4, 2012, 46(8): 1472-1477.
[4] LI Yi-min, HAO Zhi-yong, ZENG Xiao-chun. Finite element analysis for connecting rod considering oil film lubrication[J]. J4, 2012, 46(7): 1233-1237.
[5] LI Jia, LIU Zhen-tao, LIU Zhong-min, TAN Yong-nan, YU Xiao-li. Simulation and test of flow process in air filter[J]. J4, 2012, 46(2): 327-332.
[6] XIAO Bao-lan, YU Xiao-li, HAN Song, LU Guo-dong, XIA Li-feng. Parameter sensitivity analysis  of fin based on neural network
in  heat exchanger
[J]. J4, 2011, 45(1): 122-125.
[7] XIAO Bao-lan, YU Xiao-li, HAN Song, LU Guo-dong, XIA Li-feng. The study of effects of fin parameters on thermal hydraulic
performance of a vehicular charged air cooler
[J]. J4, 2010, 44(11): 2164-2168.