Please wait a minute...
J4  2012, Vol. 46 Issue (10): 1784-1789    DOI: 10.3785/j.issn.1008-973X.2012.10.008
    
Simulation methods for acoustical characteristics of
air-cleaner filter element
LIU Lian-yun, HAO Zhi-yong, QIAN Xin-yi
Department of Power Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The noise reduction of the filter-setting equipment with a filter element in it was measured to determine the acoustical parameters of the filter element, by combining with finite element method (FEM). Results show that FEM can be used to analyze the acoustical properties of the filter element. A computational fluid dynamics (CFD) approach was employed to calculate noise reductions of both the filter-equipment and an air-cleaner with and without the filter element. The CFD-calculated results agreed well with the measured results when the filter element was not installed. However, when the filter element was installed, the CFD-calculated result showed greater error than the FEM-calculated results. Features of the FEM and CFD approach of analyzing acoustical properties of the filter element were analyzed. A CFD-based engineering approach was proposed to determine and set acoustical parameters of a filter element.



Published: 01 October 2012
CLC:  TK 402  
Cite this article:

LIU Lian-yun, HAO Zhi-yong, QIAN Xin-yi. Simulation methods for acoustical characteristics of
air-cleaner filter element. J4, 2012, 46(10): 1784-1789.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.10.008     OR     http://www.zjujournals.com/eng/Y2012/V46/I10/1784


空滤器滤芯声学特性的仿真方法

 通过实验测量装有滤芯的滤芯安置装置的消声量,结合声学有限元仿真方法,确定滤芯的声学特性参数.结果显示,采用有限元法可以用来分析滤芯声学特性.应用计算流体动力学(CFD)法计算不带滤芯和带滤芯时滤芯安置装置及空滤器的消声量,不带滤芯时采用CFD法得到的计算结果与测量结果吻合良好,带滤芯时采用CFD法得到的计算结果比有限元法计算结果误差更大.研究采用有限元法和CFD法分析滤芯声学特性时的特点,提出基于CFD法的提取和设置滤芯声学特性参数的工程方法.

[1] 方丹群.空气动力性噪声与消声器[M].北京:科学出版社,1978: 110-120.
[2] DELANY M E, BAZLEY E N. Acoustical properties of fibrous absorbent materials [J]. Applied Acoustics, 1970, 3(2): 105-116.
[3] UTSUNO H, TANAKA T, FUJIKAWA T. Transfer function method for measuring characteristic impedance and propagation constant of porous materials [J]. Journal of Acoustical Society of America, 1989, 86(2): 637-643.
[4] ALLARD J F, ATALLA N. Propagation of sound in porous material: modeling sound absorbing materials [M]. New York: Wiley, 2009: 20-26.
[5] ATSM C52203, Standard test method for airflow resistance of acoustical materials [S]. Philadelphia: [s.n.], 2003.
[6] REN M, JACOBSEN F. A method of measuring dynamic the flow resistance and reactance of porous materials [J]. Applied Acoustics, 1993, 39(4): 265-276.
[7] 贾维新.发动机结构噪声和进气噪声的数字化仿真及优化设计研究[D].杭州:浙江大学,2008: 129-153.
JIA Weixing. Research on simulation of structrual noise  / intake noise and optimization design [D]. Hangzhou: Zhejiang University, 2008: 129-153.
[8] 金岩,郝志勇.针对通过噪声的空滤器声学特性研究与改进[J].浙江大学学报:工学版,2006,40(8): 1143-1145.
JIN Yan, HAO Zhiyong. Investigation and improvement of airin filter acoustic performance towards passby noise [J]. Journal of Zhejiang University: Engineering Science, 2006, 40(8): 1143-1145.
[9] MEHDIZADEH O Z, PARASCHIVOIU M. A threedimensional finite element approach for predicting the transmission loss in mufflers and silencers with no mean flow [J]. Applied Acoustics, 2005, 66(8): 902-918.
[10] LIU Chi, HAO Zhiyong, CHEN Xingrui. Optimal design of acoustic performance for automotive aircleaner [J]. Applied Acoustics, 2010, 71(5): 431-438.
[11] 徐航手,季振林,康钟绪.抗性消声器传递损失预测的三维时域计算方法[J].振动与冲击,2010, 29(4): 107-110.
XU Hangshou, JI Zhenlin, KANG Zhongxu. Threedimensional timedomain computational approach for predicting transmission loss of reactive silencers [J]. Journal of Vibration and Shock, 2010, 29(4): 107-110.
[12] BROATCH A, MARGOT X, GIL A. A CFD approach to the computation of the acoustic response of exhaust mufflers [J]. Journal of Computational Acoustics, 2005, 13(2): 301-316.
[13] 李增刚. SYSNOISE Rev5.6 详解[M].北京:国防工业出版社,2005: 75-79.
[14] MIDDELBERG J M, BARBER T J, LEONG S S. CFD analysis of the acoustic and mean flow performance of simple expansion chamber mufflers [J]. Proceedings of IMECE04. Anaheim: [s. n.], 2004: 151-156.

[1] LI Yi-min,HAO Zhi-yong,DU Ji-sheng. Study of coupling dynamics between crankshaft and
timing drive system of engine
[J]. J4, 2013, 47(9): 1650-1657.
[2] LI Yi-min, HAO Zhi-yong, YE Hui-fei. Dynamic characteristic analysis of diesel timing gear trains[J]. J4, 2012, 46(8): 1472-1477.
[3] LI Yi-min, HAO Zhi-yong, ZENG Xiao-chun. Finite element analysis for connecting rod considering oil film lubrication[J]. J4, 2012, 46(7): 1233-1237.
[4] LI Jia, LIU Zhen-tao, LIU Zhong-min, TAN Yong-nan, YU Xiao-li. Simulation and test of flow process in air filter[J]. J4, 2012, 46(2): 327-332.
[5] XIAO Bao-lan, YU Xiao-li, HAN Song, LU Guo-dong, XIA Li-feng. Parameter sensitivity analysis  of fin based on neural network
in  heat exchanger
[J]. J4, 2011, 45(1): 122-125.
[6] XIAO Bao-lan, YU Xiao-li, HAN Song, LU Guo-dong, XIA Li-feng. The study of effects of fin parameters on thermal hydraulic
performance of a vehicular charged air cooler
[J]. J4, 2010, 44(11): 2164-2168.
[7] XIAO Bao-Lan, SHU Xiao-Chi, ZHONG Xun, HAN Song, JIA Li-Feng. Experimental and numerical study of nanofluid flow and heat transfer performance[J]. J4, 2010, 44(6): 1149-1154.