Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (3): 578-585    DOI: 10.3785/j.issn.1008-973X.2021.03.019
计算机与控制工程     
循环流化床外置换热器壁温偏差改进措施
聂立1,2(),蔡润夏3,鲁佳易2,*(),程伟2,张文杰2,巩李明2,薛大勇2,张缦3,杨海瑞3,吕俊复3
1. 浙江大学 能源工程学院,浙江 杭州 310027
2. 清洁燃烧与烟气净化四川省重点实验室,四川 成都 611731
3. 清华大学 热科学与动力工程教育部重点实验室,北京 100084
Improvements of non-uniform distribution of tube wall temperatures in circulating fluidized bed boiler’s external heat exchangers
Li NIE1,2(),Run-xia CAI3,Jia-yi LU2,*(),Wei CHENG2,Wen-jie ZHANG2,Li-ming GONG2,Da-yong XUE2,Man ZHANG3,Hai-rui YANG3,Jun-fu LV3
1. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
2. Clean Combustion and Flue Gas Purification Key Laboratory of Sichuan Province, Chengdu 611731, China
3. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
 全文: PDF(1299 KB)   HTML
摘要:

为了解决660 MW超超临界循环流化床锅炉外置换热器中受热面的壁温偏差问题,通过数值计算,复现600 MW超临界循环流化床锅炉外置换热器壁温分布,并将该方法应用到相同尺寸的超超临界循环流化床锅炉外置换热器壁温计算中. 通过对边壁区域3片管屏工质节流,从工质侧解决超超临界循环流化床锅炉外置换热器壁温偏差问题,使受热面计算壁温偏差控制在30°C以内,实现受热面管材安全运行. 通过冷态试验,发现颗粒侧传热系数沿外置换热器宽度方向呈现马鞍形的双峰分布,传热系数最大值出现在距离边壁约0.2倍宽度范围内,通过调整边壁区域气体速度可以提高该区域的传热系数,为运行过程减缓局部偏差提供参考.

关键词: 超超临界循环流化床锅炉外置换热器壁温偏差    
Abstract:

A wall temperature distribution of the external heat exchanger of 600 MW supercritical circulating fluidized bed boiler was reproduced by numerical calculation, in order to solve the wall temperature deviation of the external heat exchanger of 660 MW ultra supercritical circulating fluidized bed boiler. The result was applied to the calculation of wall temperature of the same size external heat exchanger of ultra-supercritical circulating fluidized bed boiler. By throttling the working medium of three tube platens near side wall, the calculated wall temperature deviation of external heat exchanger of ultra-supercritical circulating fluidized bed boiler was solved. The wall temperature deviation of heating surface could be controlled within 30°C to keep safe operation of heating surface tubes. Experimental results show that the heat transfer coefficient of the particle side presents a saddle shaped bimodal distribution along the width direction of the external heat exchanger, and the maximum value of the heat transfer coefficient appear at about 0.2 times width near the side wall. By adjusting the gas velocity in the side wall area, the heat transfer coefficient can be improved, so as to provide guidance for slowing down the local deviation in the operation process.

Key words: ultra supercritical    circulating fluidized bed    boiler    external heat exchanger    tube wall temperature deviation
收稿日期: 2020-02-10 出版日期: 2021-04-25
CLC:  TK 229.6  
基金资助: 国家重点研发计划资助项目(2016YFB0600204)
通讯作者: 鲁佳易     E-mail: niel@dbc.com.cn;lujy@dbc.com.cn
作者简介: 聂立(1971—),男,教授级高级工程师,从事循环流化床技术与装备研究. orcid.org/0000-0002-2790-0127.E-mail: niel@dbc.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
聂立
蔡润夏
鲁佳易
程伟
张文杰
巩李明
薛大勇
张缦
杨海瑞
吕俊复

引用本文:

聂立,蔡润夏,鲁佳易,程伟,张文杰,巩李明,薛大勇,张缦,杨海瑞,吕俊复. 循环流化床外置换热器壁温偏差改进措施[J]. 浙江大学学报(工学版), 2021, 55(3): 578-585.

Li NIE,Run-xia CAI,Jia-yi LU,Wei CHENG,Wen-jie ZHANG,Li-ming GONG,Da-yong XUE,Man ZHANG,Hai-rui YANG,Jun-fu LV. Improvements of non-uniform distribution of tube wall temperatures in circulating fluidized bed boiler’s external heat exchangers. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 578-585.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.03.019        http://www.zjujournals.com/eng/CN/Y2021/V55/I3/578

图 1  600 MW CFB锅炉高再外置换热器壁温偏差
图 2  CFB锅炉外置换热器示意图
图 3  外置换热器冷态试验系统示意图
图 4  外置换热器试验装置本体结构示意图
图 5  试验传热探头示意图
图 6  600 MW CFB锅炉外置换热器计算壁温与实测壁温对比
图 7  节流后超超临界CFB锅炉外置换热器壁温分布
图 8  外置换热器流化速度对传热系数分布的影响
图 9  外置换热器布风板阻力随风速的变化曲线
图 10  外置换热器床层高度对传热系数分布的影响
图 11  调整布风对外置换热器传热系数影响
1 YUE G, CAI R, LU J, et al From a CFB reactor to a CFB boiler–the review of R&D progress of CFB coal combustion technology in China[J]. Powder Technology, 2017, 316 (1): 18- 28
2 程乐鸣, 周星龙, 郑成航, 等 大型循环流化床锅炉的发展[J]. 动力工程, 2008, 28 (6): 817- 826
CHENG Le-ming, ZHOU Xing-long, ZHENG Cheng-hang, et al Development of large-scale circulating fluidized bed boiler[J]. Power Engineering, 2008, 28 (6): 817- 826
3 宋畅, 吕俊复, 杨海瑞, 等 超临界及超超临界循环流化床锅炉技术研究与应用[J]. 中国电机工程学报, 2018, 38 (2): 338- 347
SONG Chang, LYU Jun-fu, YANG Hai-rui, et al Research and application of supercritical and ultra-supercritical circulating fluidized bed boiler technology[J]. Proceedings of the CSEE, 2018, 38 (2): 338- 347
4 黄中, 杨娟, 车得福 大容量循环流化床锅炉技术发展应用现状[J]. 热力发电, 2019, 48 (6): 1- 8
HUANG Zhong, YANG Juan, CHE De-fu Application and development status of large-scale CFB boilers[J]. Thermal Power Generation, 2019, 48 (6): 1- 8
5 CHANG S, ZHOU J, MENG S, et al Clean coal technologies in China: current status and future perspectives[J]. Engineering, 2016, 2 (4): 447- 459
doi: 10.1016/J.ENG.2016.04.015
6 蔡润夏, 吕俊复, 凌文, 等 超(超)临界循环流化床锅炉技术的发展[J]. 中国电力, 2016, 49 (12): 1- 7
CAI Run-xia, LU Jun-fu, LING Wen, et al Progress of Supercritical and Ultra-Supercritical Circulating Fluidized Bed Boiler Technology[J]. Electric Power, 2016, 49 (12): 1- 7
7 聂立, 巩李明, 邓启刚, 等 东方660 MW高效超超临界CFB锅炉的设计[J]. 电站系统工程, 2019, 35 (4): 21- 24
NIE Li, GONG Li-ming, DENG Qi-gang, et al Design of Dongfang 660 MW highly-efficient ultra-supercritical CFB boiler[J]. Power System Engineering, 2019, 35 (4): 21- 24
8 张缦, 蔡润夏, 姜孝国, 等 660 MW高效超超临界双炉膛循环流化床锅炉的设计开发[J]. 动力工程学报, 2018, 38 (5): 341- 346
ZHANG Man, CAI Run-xia, JIANG Xiao-guo, et al Design and development of a 660 MW high efficiency ultra-supercritical double-furnace CFB boiler[J]. Journal of Chinese Society of Power Engineering, 2018, 38 (5): 341- 346
9 XIONG B, LU X, AMANO R S, et al Gas-solid flow in an integrated external heat exchanger for CFB boiler[J]. Powder Technology, 2010, 202 (1-3): 55- 61
doi: 10.1016/j.powtec.2010.04.006
10 张缦, 吴海波, 孙运凯, 等 大型循环流化床锅炉外置换热器运行特性分析[J]. 中国电机工程学报, 2012, 32 (14): 42- 48
ZHANG Man, WU Hai-bo, SUN Yu-kai, et al Operation characteristics of fluidized bed heat exchanger of large-scale circulating fluidized bed boiler[J]. Proceedings of the CSEE, 2012, 32 (14): 42- 48
11 蔡润夏, 吕俊复, 张缦, 等 超超临界循环流化床锅炉流化床换热器热偏差形成的流动基础[J]. 锅炉技术, 2019, 50 (4): 34- 39
CAI Run-xia, LYU Jun-fu, ZHANG Man, et al Hydrodynamic mechanisms of non-uniform distribution of heat transfer in fluidized bed heat exchangers of ultra supercritical CFB boilers[J]. Boiler Technology, 2019, 50 (4): 34- 39
12 孙献斌 700°C超超临界循环流化床锅炉方案设计研究[J]. 中国电机工程学报, 2014, 34 (23): 3977- 3982
SUN Xian-bin Plan design and research of 700°C ultra-supercritical circulating fluidized bed boiler[J]. Proceedings of the CSEE, 2014, 34 (23): 3977- 3982
13 聂立, 王鹏, 彭雷, 等 600 MW超临界循环流化床锅炉的设计[J]. 动力工程, 2008, 28 (5): 701- 706
NIE li, WANG Peng, PENG Lei, et al Design of 600 MW supercritical circulating fluidized bed boiler[J]. Power Engineering, 2008, 28 (5): 701- 706
14 牟晓哲, 宋国良, 孙运凯, 等 循环流化床外置换热器冷态实验研究[J]. 热能动力工程, 2012, 27 (5): 560- 565
MU Xiao-zhe, SONG Guo-liang, SUN Yun-kai, et al Cold-state experimental study of a CFB externally-installed heat exchanger[J]. Journal of Engineering for Thermal Energy and Power, 2012, 27 (5): 560- 565
15 张文清, 孙思聪, 卢啸风 大型循环流化床锅炉外置式换热器运行特性的对比研究[J]. 热能动力工程, 2017, 32 (1): 97- 101
ZHANG Wen-qing, SUN Si-cong, LU Xiao-feng Comparative study on the external heat exchanger operating characteristics in large-scale circulating fluidized bed boiler[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32 (1): 97- 101
16 CAI R, ZHANG M, MO X, et al Operation characteristics of external heat exchangers in the 600 MW supercritical CFB boiler[J]. Fuel processing technology, 2018, 172 (4): 65- 71
17 郑兴胜, 徐鹏, 胡修奎, 等 600 MW超临界CFB锅炉高再外置换热器运行调整试验研究[J]. 东方电气评论, 2016, 30 (2): 23- 26
ZHENG Xing-sheng, XU Peng, HU Xiu-kui, et al Experimental research on adjustment of operation of high temperature external heat exchanger for the 600 MW super-critical CFB boiler[J]. Dongfang Electric Review, 2016, 30 (2): 23- 26
18 SONG G, LYU Q, XIAO F, et al Experimental research of heat transfer uniformity for fluidized bed heat exchangers in a 300 MW CFB boiler[J]. Applied Thermal Engineering, 2018, 130 (5): 938- 950
19 孙献斌, 胡昌华, 李星华, 等 600 MW超临界循环流化床锅炉外置床壁温特性分析[J]. 电力建设, 2014, 35 (4): 6- 9
SUN Xian-bin, HU Chang-hua, LI Xing-hua, et al Tube wall temperature characteristic of external heat exchanger in 600 MW supercritical CFB boiler[J]. Electric Power Construction, 2014, 35 (4): 6- 9
20 凌文, 吕俊复, 周托, 等 660 MW超超临界循环流化床锅炉研究开发进展[J]. 中国电机工程学报, 2019, 39 (9): 2515- 2524
LING Wen, LYU Jun-fu, ZHOU Tuo, et al Research and development progress of the 660 MW ultra-supercritical circulating fluidized bed boiler[J]. Proceedings of the CSEE, 2019, 39 (9): 2515- 2524
21 WANG Q, LUO Z, FANG M, et al Development of a new external heat exchanger for a circulating fluidized bed boiler[J]. Chemical Engineering and Processing: Process Intensification, 2003, 42 (4): 327- 335
doi: 10.1016/S0255-2701(02)00054-5
22 王勤辉, 施正伦, 程乐鸣, 等 非机械阀控制外置换热器的试验研究[J]. 动力工程, 2001, 21 (4): 1324- 1330;
WANG Qin-hui, SHI Zheng-lun, CHENG Le-ming, et al A new concept of external heat exchanger for circulatingfluidized bed boiler[J]. Power Engineering, 2001, 21 (4): 1324- 1330;
23 杨磊. 循环流化床锅炉外置式换热器热态实验研究[D]. 重庆: 重庆大学, 2007: 59-60.
YANG Lei. CFBB external heat exchanger hot-state experimental study [D]. Chongqing: Chongqing University, 2007: 59-60.
24 YAO X, ZHANG Y, LU C, et al Investigation of the heat transfer intensification mechanism for a new fluidized catalyst cooler[J]. AIChE Journal, 2015, 61 (8): 2415- 2427
doi: 10.1002/aic.14841
25 PISTERS K, PRAKASH A Investigations of axial and radial variations of heat transfer coefficient in bubbling fluidized bed with fast response probe[J]. Powder Technology, 2011, 207 (1-3): 224- 231
doi: 10.1016/j.powtec.2010.11.003
26 TAOFEEQ H, AI-DAHHAN M Heat transfer and hydrodynamics in a gas-solid fluidized bed with vertical immersed internals[J]. International Journal of Heat and Mass Transfer, 2018, 122 (7): 229- 251
27 STEFANOVA A, BI H T, LIM J C, et al Local hydrodynamics and heat transfer in fluidized beds of different diameter[J]. Powder Technology, 2011, 212 (1): 57- 63
doi: 10.1016/j.powtec.2011.04.026
28 STEFANOVA A, BI X T, LIM C J, et al A probabilistic heat transfer model for turbulent fluidized beds[J]. Powder Technology, 2020, 365 (1): 163- 171
29 CAI R, ZHANG M, GE R, et al Experimental study on local heat transfer and hydrodynamics with single tube and tube bundles in an external heat exchanger[J]. Applied Thermal Engineering, 2019, 149 (25): 924- 938
30 LIM C N, GILBERTSON M A, HARRISONA J L Bubble distribution and behaviour in bubbling fluidised beds[J]. Chemical Engineering Science, 2007, 62 (1-2): 56- 69
doi: 10.1016/j.ces.2006.08.034
31 LI Y, FAN H, FAN X Identify of flow patterns in bubbling fluidization[J]. Chemical Engineering Science, 2014, 117 (27): 455- 464
32 RUDISULI M, SCHILDHAUER T J, BIOLLAZ S M A, et al Radial bubble distribution in a fluidized bed with vertical tubes[J]. Industrial and Engineering Chemistry Research, 2012, 51 (42): 13815- 13824
doi: 10.1021/ie3004418
33 HOFER G, SCHONY G, PROLL T Acting on hydrodynamics to improve the local bed-to-wall heat transfer in bubbling fluidized beds[J]. Chemical Engineering Research and Design, 2018, 134 (6): 309- 318
34 YAO X, ZHANG Y, LU C, et al CFD investigation of gas-solids flow in a new fluidized catalyst cooler[J]. Powder Technology, 2016, 304 (12): 108- 119
35 MCKAIN D, CLARK N, ATKINSON C, et al Correlating local tube surface heat transfer with bubble presence in a fluidized bed[J]. Powder technology, 1994, 79 (1): 69- 79
doi: 10.1016/0032-5910(93)02802-H
[1] 刘军,李全功,廖义涵,王为术. 垃圾焚烧电厂焚烧炉-余热锅炉性能及NOx排放[J]. 浙江大学学报(工学版), 2020, 54(5): 1014-1021.
[2] 谢晓强,杨建国,朱朝阳,刘川槐,赵虹,王智化. 碗式配风对燃烧效率与NOx质量浓度的影响[J]. 浙江大学学报(工学版), 2019, 53(2): 220-227.
[3] 尤海辉, 马增益, 唐义军, 王月兰, 郑林, 俞钟, 吉澄军. 循环流化床入炉垃圾热值软测量[J]. 浙江大学学报(工学版), 2017, 51(6): 1163-1172.
[4] 周永刚,李培,敖翔,赵虹. 基于燃烧均匀性的对冲燃烧锅炉高温腐蚀抑制[J]. 浙江大学学报(工学版), 2015, 49(9): 1768-1775.
[5] 龚彬, 余春江, 王准, 骆仲泱. 生物质炉排锅炉不同受热面沉积特性[J]. 浙江大学学报(工学版), 2015, 49(8): 1578-1584.
[6] 游卓,王智化,周志军,胡昕,朱燕群,周俊虎,岑可法. MW燃煤锅炉富氧燃烧改造及NOx排放的数值模拟[J]. 浙江大学学报(工学版), 2014, 48(11): 2080-2086.
[7] 余春江,王准,龚彬,骆仲泱. 生物质锅炉钢材在氯化钾接触条件下腐蚀特性[J]. 浙江大学学报(工学版), 2014, 48(11): 2046-2052.
[8] 王星昊, 王智化, 刘敬, 项飞鹏, 周俊虎, 岑可法. 某鲕状赤铁矿流化床燃煤还原焙烧-磁选研究[J]. J4, 2013, 47(4): 675-679.
[9] 钟崴,杨志群,宋冬根,胡继光,童水光. 闪速炼铜余热锅炉辐射冷却室水动力性能设计[J]. J4, 2013, 47(11): 1970-1975.
[10] 杨文闯, 杨卫娟, 周志军, 袁炜东, 陈瑶姬, 周俊虎, 岑可法. 不同二次风角度的W炉冷态流场实验研究[J]. J4, 2013, 47(1): 139-145.
[11] 田晨, 王勤辉, 程乐鸣, 骆仲泱, 倪明江. 偏置出口循环流化床内颗粒体积分数分布的测试[J]. J4, 2012, 46(4): 577-583.
[12] 钟崴, 丁晟, 宋冬根, 鞠霞, 童水光. 闪速炼铜余热锅炉辐射室流场温度场数值模拟[J]. J4, 2012, 46(2): 321-326.
[13] 黄晨,程乐鸣,周星龙,吴朝刚,周棋,方梦祥,骆仲泱. 大型循环流化床炉内悬吊受热面传热特性[J]. J4, 2012, 46(11): 2128-2132.
[14] 王国军,朱燕群,王智化,杨丽,王星昊,黄镇宇,周俊虎,岑可法. 低品位铁矿石流化焙烧-磁选提质试验研究[J]. J4, 2011, 45(5): 885-889.
[15] 李斌,黄亚继,金保昇,段锋,章名耀. 加压湍动循环流化床气化炉煤气成分与热值试验[J]. J4, 2011, 45(11): 2026-2030.