Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (2): 220-227    DOI: 10.3785/j.issn.1008-973X.2019.02.003
能源工程     
碗式配风对燃烧效率与NOx质量浓度的影响
谢晓强1(),杨建国1,*(),朱朝阳2,刘川槐2,赵虹1,王智化1
1. 浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
2. 淮浙煤电有限责任公司凤台发电分公司,安徽 淮南 232131
Effect of bowl-shaped secondary air distribution on combustion efficiency and NOx mass concentration
Xiao-qiang XIE1(),Jian-guo YANG1,*(),Chao-yang ZHU2,Chuan-huai LIU2,Hong ZHAO1,Zhi-hua WANG1
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
2. Fengtai Power Generation Branch of Huaizhe Coal and Power Co. Ltd, Huainan 232131, China
 全文: PDF(1373 KB)   HTML
摘要:

对600 MW超临界前后墙对冲燃烧锅炉在均等配风和碗式配风下的燃烧进行数值模拟,分析不同偏差程度碗式配风对炉内颗粒质量浓度场、CO体积分数场、炉膛温度、NOx生成的影响,并与试验结果进行对比. 模拟结果表明,燃烧器碗式配风改善了炉内宽度方向上的风、煤混合过程,减小了CO体积分数和煤粉颗粒质量浓度偏差,降低了炉膛出口烟气中CO的平均体积分数和飞灰中碳的质量分数,从而有效提高了前后墙对冲燃烧锅炉的燃烧效率. 燃烧器碗式配风对炉膛出口烟气中NOx的平均质量浓度有不利影响,但是当碗式配风风量偏差不大于20%时,NOx平均质量浓度变化不大于3.5%. 综合燃烧器碗式配风对水平截面CO分布特征和炉膛出口烟气中NOx的平均质量浓度的影响,在燃烧常用煤种的条件下,碗式配风的风量偏差宜控制在20%以内. 炉膛出口烟气中CO的平均体积分数、飞灰中碳的质量分数、NOx平均质量浓度的模拟值与热态试验值变化趋势一致. 在实际应用中碗式配风对CO平均体积分数的降低效果更加显著,当碗式配风的风量偏差达到20%时,省煤器出口烟气中CO的平均体积分数降低幅度达95%.

关键词: 锅炉前后墙对冲燃烧碗式配风 (BSAD)CO体积分数碳质量分数NOx质量浓度    
Abstract:

The combustion process in a 600 MW supercritical opposite-wall-firing boiler under the conditions of equal and bowl-shaped secondary air distribution (BSAD) was numerically simulated. The influence of varying secondary air distribution deviation on the particle mass concentration field, CO volume fraction field, furnace temperature and NOx generation was analyzed. The calculated results were compared with experimental data. The simulation results showed that BSAD enhanced the mixing between pulverized coal and air, decreased the bias of average CO volume fraction and particle mass concentration along the furnace width, reduced the average CO volume fraction in flue gas, carbon mass fraction in fly ash at the furnace exit, and improved the combustion efficiency of opposite-wall-firing boiler. BSAD did harm to the average NOx mass concentration in flue gas at the furnace exit, however, the NOx mass concentration varied within 3.5% when the deviation of the secondary air distribution was less than 20%. By combining the effects of BSAD on horizontal CO volume fraction distribution and average NOx mass concentration in flue gas at the furnace exit, the appropriate deviation of BSAD for the boiler is recommended to be 20% when the boiler utilizes frequently-fired coal. The variation trend of numerical results of average CO volume fraction in flue gas, carbon mass fraction in fly ash, average NOx mass concentration at the furnace exit is consistent with the in-situ experimental results. In practical operation, the effect of BSAD on declining average CO volume fraction is more significant, the reduction of average CO volume fraction at the economizer exit reaches 95% when the deviation of secondary air distribution equals to 20%.

Key words: boiler    opposite-wall-firing    bowl-shaped secondary air distribution (BSAD)    CO volume fraction    carbon mass fraction    NOx mass concentration
收稿日期: 2018-01-01 出版日期: 2019-02-21
CLC:  TK 224  
通讯作者: 杨建国     E-mail: xiexiaoqiang@zju.edu.cn;yjg@zju.edu.cn
作者简介: 谢晓强(1991—),男,博士生,从事前后墙对冲燃烧锅炉燃烧优化技术研究. orcid.org/0000-0001-8834-354X. E-mail: xiexiaoqiang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
谢晓强
杨建国
朱朝阳
刘川槐
赵虹
王智化

引用本文:

谢晓强,杨建国,朱朝阳,刘川槐,赵虹,王智化. 碗式配风对燃烧效率与NOx质量浓度的影响[J]. 浙江大学学报(工学版), 2019, 53(2): 220-227.

Xiao-qiang XIE,Jian-guo YANG,Chao-yang ZHU,Chuan-huai LIU,Hong ZHAO,Zhi-hua WANG. Effect of bowl-shaped secondary air distribution on combustion efficiency and NOx mass concentration. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 220-227.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.02.003        http://www.zjujournals.com/eng/CN/Y2019/V53/I2/220

工业分析wB/% Q/(MJ·kg?1 元素分析wB/%
M A V C H O N S
7.00 26.00 26.13 21.30 56.37 3.72 5.54 1.00 0.37
表 1  锅炉燃用煤的工业分析与元素分析(收到基)
图 2  低NOx旋流燃烧器HT-NR3结构示意图
名称 qm /(kg·s?1 θa / °C r/%
一次风 133.4 75 23.00
内二次风 62.8 345 10.83
外二次风 267.8 345 46.17
燃尽风 116.0 345 20.00
表 2  额定工况下锅炉主要运行参数
工况 配风方式 D/%
中间燃烧器 两侧燃烧器
1 均等配风 0 0
2 10%碗式配风 ?5 +5
3 20%碗式配风 ?10 +10
4 30%碗式配风 ?15 +15
表 3  不同碗式配风工况下燃烧器外二次风的风量分配
图 1  锅炉炉膛结构及燃烧器、燃尽风喷口布置
截面 H/m 截面位置说明
Z1 17.5 冷灰斗与水冷壁衔接位置
Z2 19.9 第1层燃烧器中心
Z3 24.9 第2层燃烧器中心
Z4 29.8 第3层燃烧器中心
Z5 32.5 燃烧器区域出口
Z6 36.8 主燃尽风中心
Z7 42.5 燃尽风区域出口
表 4  炉膛横向截面位置说明
图 3  沿炉膛高度方向上不同截面平均温度实测值与模拟值的比较
图 5  碗式配风对燃尽风区域出口处CO体积分数场的影响
图 6  碗式配风对燃烧器区域出口处颗粒质量浓度场的影响
图 7  碗式配风对燃尽风区域出口处颗粒质量浓度场的影响
图 8  沿炉膛高度方向上不同截面CO平均体积分数变化
配风方式 $\overline \varphi_{\rm s}\left({\rm O}_2\right)$/
%
$\overline \varphi_{\rm s}\left({\rm CO}\right)$/
%
$w_{\rm s}\left({\rm C}\right)$/
%
$\overline \rho_{\rm s}\left({\rm NO}_x\right)$/
(mg·m?31)
注:1)NOx质量浓度折算到6%O2体积分数
均等配风 2.17 0.435 6 3.27 314
10% 碗式配风 2.21 0.404 4 3.47 312
20% 碗式配风 2.08 0.285 6 2.21 325
30% 碗式配风 1.94 0.230 9 1.38 388
表 5  不同配风方式下炉膛出口烟气参数模拟值
图 9  沿炉膛高度方向上不同截面平均烟气温度变化
图 10  沿炉膛高度方向上不同截面NOx平均体积分数变化
图 4  碗式配风对燃烧器区域出口处CO体积分数场的影响
配风方式 $\overline \varphi_{\rm t}\left({\rm O}_2\right)$/
%
$\overline \varphi_{\rm t}\left({\rm CO}\right)$/
%
$w_{\rm t}\left({\rm C}\right)$/
%
$\overline \rho_{\rm t}\left({\rm NO}_x\right)$/
(mg·m?31)
注:1)NOx质量浓度折算到6%O2体积分数
均等配风 2.10 0.232 4 3.34 302
10% 碗式配风 2.06 0.064 1 2.89 326
20% 碗式配风 2.01 0.012 0 2.14 306
表 6  不同配风方式下省煤器出口烟气参数试验值
1 LIU H, TANG C, ZHANG L, et al Effect of two-level over fire air on the combustion and NOx emission characteristics in a 600 MW wall-fired boiler [J]. Numerical Heat Transfer Part A: Applications, 2015, 10 (6): 858- 875
2 仝营, 钟葳, 吴燕玲, 等 基于流体网络方法的超临界电站锅炉性能分析平台[J]. 中国电机工程学报, 2014, 34 (5): 748- 755
TONG Ying, ZHONG Wei, WU Yan-ling, et al Performance analysis platform of supercritical power station boilers based on the fluid network method[J]. Proceedings of the CSEE, 2014, 34 (5): 748- 755
3 刘建全. 超(超)临界机组锅炉燃烧特性试验与优化研究 [D]. 保定: 华北电力大学, 2012.
LIU Jian-quan. Combustion characteristics experimental and optimization on supercritical and ultra supercriticalunit boiler [D]. Baoding: North China Electric Power University, 2012.
4 李德波,沈跃良. 前后墙对冲旋流燃煤锅炉CO和NOx分布规律的试验研究 [J]. 动力工程学报, 2013, 33(7): 502-506.
LI De-bo, SHEN Yue-liang. Experimental study on CO and NOx emission of a swirl-opposed coal-fired boiler [J]. Journal of Chinese Society of Power Engineering, 2013, 33(7): 502-506.
5 周永刚, 李培, 敖翔, 等 基于燃烧均匀性的对冲燃烧锅炉高温腐蚀抑制[J]. 浙江大学学报: 工学版, 2015, 49 (9): 1769- 1775
ZHOU Yong-gang, LI Pei, AO Xiang, et al High temperature corrosion inhibition for opposed firing boiler based on combustion distribution evenness[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (9): 1769- 1775
6 YANG J, KIM J, HONG J, et al Effects of detailed operating parameters on combustion in two 500 MWe coal-fired boilers of an identical design[J]. Fuel, 2015, 144: 145- 156
doi: 10.1016/j.fuel.2014.12.017
7 LUO R, LI N, ZHANG Y, et al Effect of the adjustable inner secondary air-flaring angle of swirl burner on coal-opposed combustion[J]. Journal of Energy Engineering, 2016, 142 (1): 04010518
8 SUNG Y, LEE S, EOM S, et al Optical non-intrusive measurements of internal recirculation zone of pulverized coal swirling flames with secondary swirl intensity[J]. Energy, 2016, 102: 61- 74
9 LI S, LI Z, JIANG B, et al Effect of secondary air mass flow rate on the airflow and combustion characteristics and NOx formation of the low-volatile coal-fired swirl burner [J]. Asia-Pacific Journal of Chemical Engineering, 2015, 10 (6): 858- 875
doi: 10.1002/apj.1923
10 ZENG L, LI Z, ZHAO G, et al The influence of swirl burner structure on the gas/particle flow characteristics[J]. Energy, 2011, 36 (10): 6184- 6194
doi: 10.1016/j.energy.2011.07.044
11 CHEN Z, WANG Q, WANG B, et al Anthracite combustion characteristics and NOx formation of a 300 MWe down-fired boiler with swirl burners at different loads after the implementation of a new combustion system [J]. Applied Energy, 2017, 189: 133- 141
doi: 10.1016/j.apenergy.2016.12.063
12 YAN L, HE B, YAO F, et al Numerical simulation of a 600 MW utility boiler with different tangential arrangements of burners[J]. Energy and Fuels, 2012, 26: 5491- 5502
13 ADAMCZYK W, KOZOLUB P, WECEL G, et al Simulations of the PC boiler equipped with complex swirling burners[J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2014, 24 (4): 845- 860
14 GANDHI M, VUTHALURU R, VUTHALURU H, et al CFD based prediction of erosion rate in large scale wall-fired boiler[J]. Applied Thermal Engineering, 2012, 42: 90- 100
doi: 10.1016/j.applthermaleng.2012.03.015
15 VUTHALURU R, VUTHALURU H Modelling of a wall fired furnace for different operating conditions using FLUENT[J]. Fuel Processing Technology, 2006, 87 (7): 633- 639
doi: 10.1016/j.fuproc.2006.01.004
16 VIKHANSKY A, BAR-ZIV E, CHUDNOSKY B, et al Measurements and numerical simulations for optimization of the combustion process in a utility boiler[J]. International Journal of Energy Research, 2004, 28 (5): 391- 401
doi: 10.1002/(ISSN)1099-114X
17 方庆艳, 汪华剑, 陈刚, 等 超超临界锅炉磨煤机组合运行方式优化数值模拟[J]. 中国电机工程学报, 2011, 31 (5): 1- 6
FANG Qing-yan, WANG Hua-jian, CHEN Gang, et al Optimal simulation on the combustion mode of mills for an ultra-supercritical utility boiler[J]. Proceedings of the CSEE, 2011, 31 (5): 1- 6
18 XU X, WANG Z, ZHUO Y, et al False diffusion in numerical simulation of combustion processes in tangential-fired furnace[J]. Journal of Mechanical Science and Technology, 2007, 21 (11): 1828- 1846
doi: 10.1007/BF03177439
19 李想.1000 MW超超临界前后墙旋流对冲锅炉燃烧数值模拟[D]. 武汉: 华中科技大学, 2012.
LI Xiang. Numerical simulation of coal combustion in a 1000 MW ultra-supercritical [D]. Wuhan: Huazhong University of Science and Technology, 2012.
20 HILL S, SMOOT L Modeling of nitrogen oxides formation and destruction in combustion systems[J]. Progress in Energy and Combustion Science, 2000, 26 (4): 417- 458
21 DE S Overall reaction rates of NO and N2 formation from fuel nitrogen [J]. Symposium on Combustion, 1975, 15 (1): 1093- 1102
doi: 10.1016/S0082-0784(75)80374-2
22 CHOI C, KIM C Numerical investigation on the flow, combustion and NOx emission characteristics in a 500 MWe tangentially fired pulverized-coal boiler [J]. Fuel, 2009, 88 (9): 1720- 1731
doi: 10.1016/j.fuel.2009.04.001
[1] 聂立,蔡润夏,鲁佳易,程伟,张文杰,巩李明,薛大勇,张缦,杨海瑞,吕俊复. 循环流化床外置换热器壁温偏差改进措施[J]. 浙江大学学报(工学版), 2021, 55(3): 578-585.
[2] 刘军,李全功,廖义涵,王为术. 垃圾焚烧电厂焚烧炉-余热锅炉性能及NOx排放[J]. 浙江大学学报(工学版), 2020, 54(5): 1014-1021.
[3] 龚彬, 余春江, 王准, 骆仲泱. 生物质炉排锅炉不同受热面沉积特性[J]. 浙江大学学报(工学版), 2015, 49(8): 1578-1584.
[4] 游卓,王智化,周志军,胡昕,朱燕群,周俊虎,岑可法. MW燃煤锅炉富氧燃烧改造及NOx排放的数值模拟[J]. 浙江大学学报(工学版), 2014, 48(11): 2080-2086.
[5] 余春江,王准,龚彬,骆仲泱. 生物质锅炉钢材在氯化钾接触条件下腐蚀特性[J]. 浙江大学学报(工学版), 2014, 48(11): 2046-2052.
[6] 钟崴,杨志群,宋冬根,胡继光,童水光. 闪速炼铜余热锅炉辐射冷却室水动力性能设计[J]. J4, 2013, 47(11): 1970-1975.
[7] 杨文闯, 杨卫娟, 周志军, 袁炜东, 陈瑶姬, 周俊虎, 岑可法. 不同二次风角度的W炉冷态流场实验研究[J]. J4, 2013, 47(1): 139-145.
[8] 钟崴, 丁晟, 宋冬根, 鞠霞, 童水光. 闪速炼铜余热锅炉辐射室流场温度场数值模拟[J]. J4, 2012, 46(2): 321-326.
[9] 徐何伟,周昊,岑可法. 红外反射法测量飞灰碳质量分数[J]. J4, 2011, 45(5): 890-895.
[10] 刘富君, 孔帅, 凌张伟, 郑慕林, 钱岳强, 金南辉, 王强, 李翔. 基于风险检验技术的电站锅炉过热器评定方法[J]. J4, 2011, 45(10): 1791-1798.
[11] 郑成航, 程乐鸣, 骆仲泱, 王勤辉, 施正伦, 岑可法. 裤衩型300 MW循环流化床炉膛二次风数值模拟[J]. J4, 2010, 44(4): 743-749.
[12] 吕钰, 王智化, 杨卫娟, 周俊虎, 何沛, 岑可法. 大型燃煤锅炉SNCR过程数值研究[J]. J4, 2010, 44(4): 750-755.
[13] 谢金芳, 钟崴, 周懿, 吴燕玲, 童水光. 基于基环平差流量调节的锅炉水动力计算方法[J]. J4, 2010, 44(3): 499-504.
[14] 钟崴, 吴燕玲, 童水光, 葛俊旭, 周懿, 谢金芳. 基于遗传算法的锅炉对流受热面优化设计[J]. J4, 2010, 44(12): 2291-2296.
[15] 杨卫娟 周志军 刘茂省 秦岭 刘建忠 周俊虎 岑可法. 锅炉低NOx燃烧中的三次风运行优化[J]. J4, 2008, 42(7): 1227-1230.