Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (6): 1092-1100    DOI: 10.3785/j.issn.1008-973X.2019.06.008
土木与建筑工程     
大跨度双层桁架主梁三分力系数识别
刘昊苏(),雷俊卿*()
北京交通大学 土木建筑工程学院 北京 100044
Identification of three-component coefficients of double deck truss girder for long-span bridge
Hao-su LIU(),Jun-qing LEI*()
School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
 全文: PDF(1398 KB)   HTML
摘要:

采用风洞试验与计算流体力学(CFD)相结合的方法,对某公铁两用斜拉桥双层桁架主梁在?10°~10°风攻角下的三分力系数进行研究. 利用风洞试验技术测试成桥及施工阶段不同风攻角下主梁的气动力,并识别相应的三分力系数;基于标准k-ε双方程湍流模型建立三维数值计算模型,识别不同风攻角下三分力系数结果,并将其与风洞试验结果对比;结合2种方法研究雷诺数、桥面附属物和公路及铁路交通状况等因素对主梁气动特性的影响. 结果表明低风攻角下雷诺数对主梁气动特性影响较小,可忽略不计,并提出了高风攻角下识别双层桁架三分力系数最低雷诺数的建议值;桥面附属物对主梁阻力系数影响显著,下层桥面附属物有效降低了主梁升力系数;公路车辆对主梁气动系数影响较小,迎风侧列车对主梁阻力系数、升力系数影响显著,背风侧列车对主梁力矩系数影响显著.

关键词: 三分力系数风洞试验数值模拟双层桁架公铁两用斜拉桥    
Abstract:

The three-component coefficients of double-deck truss girder used in long span rail-road cable-stayed bridge were investigated under wind attack angles from ?10° to 10°, with the combination of wind tunnel test and computational fluid dynamics (CFD) methods. The wind tunnel test was used to test the aerodynamic force of the main beam under different wind attack angles in completion and construction stage, and the three-component coefficients were identified. A three-dimensional numerical calculation model was established based on the standard k-ε two-equation turbulence model to identify the three-component coefficients under different wind attack angles, which were compared with the wind tunnel test results. Combing these two methods, the effects of Reynolds number, bridge attachment and highway and railway traffic conditions on the main girder aerodynamic characteristics were studied. Results show that the Reynolds number has little effect on low wind attack angle, which can be ignored, and the Reynolds number restriction was proposed to identify the three-component coefficient of the double-deck truss under high wind attack angle. The bridge deck attachment has significant influence on the drag coefficient, and the down deck appendant can effectively reduce the main beam lift coefficient. The road vehicles have less influence on the aerodynamic coefficient. The drag and lift coefficients are obviously influenced by the windward train effect, and the moment coefficient are obviously affected by leeward train.

Key words: three-component coefficients    wind tunnel test    numerical simulation    double-deck truss girder    rail-road cable-stayed bridge
收稿日期: 2018-06-08 出版日期: 2019-05-22
CLC:  U 24  
通讯作者: 雷俊卿     E-mail: liuhaosu@126.com;jqlei@bjtu.edu.cn
作者简介: 刘昊苏(1988—),男,博士生,从事大跨度桥梁抗风理论与实践研究. orcid.org/0000-0001-5303-8262. E-mail: liuhaosu@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘昊苏
雷俊卿

引用本文:

刘昊苏,雷俊卿. 大跨度双层桁架主梁三分力系数识别[J]. 浙江大学学报(工学版), 2019, 53(6): 1092-1100.

Hao-su LIU,Jun-qing LEI. Identification of three-component coefficients of double deck truss girder for long-span bridge. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1092-1100.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.06.008        http://www.zjujournals.com/eng/CN/Y2019/V53/I6/1092

图 1  三分力方向及坐标系统
图 2  双层桁架主梁横截面
图 3  位于风洞中的桁架节段模型
图 4  北京交通大学风洞系统示意图
图 5  α支架结构及测力天平
工况 测试内容 测试对象 模型状态描述
1 雷诺数效应 成桥主梁 风攻角为?10°~10°,风速为10 m/s、15 m/s
2 桥面附属物 成桥、施工阶段主梁 主梁节段模型附加栏杆、挡渣墙,风攻角为?10°~10°.
3 交通因素 公路车辆主梁 上层按6线公路布置不同类型车辆,风攻角为±3°、±1°及0°
4 交通因素 铁路车辆主梁 下层四线铁路按轨道I~IV依次布置单列列车,风攻角为±3°、±1°及0°
表 1  风洞试验典型工况
图 6  计算域尺寸及边界定义
图 7  数值计算域网格划分
图 8  不同风速下三分力系数的试验数值与CFD 计算结果对比
v/(m·s?1) $Re$ ${C_{\rm D}}$ ${C_{\rm L}}$ ${C_{\rm M}}$
10 6.3×104 0.978 0.987 0.993
15 9.5×104 0.985 0.992 0.963
表 2  风洞试验与CFD模拟结果的相关系数
图 9  不同雷诺数下的三分力系数对比
图 10  附属物对三分力系数的影响
桥面状态 he/m α=?3° α=0° α=3°
${C_{\rm D}}$ ${C_{\rm L}}$ ${C_{\rm D}}$ ${C_{\rm L}}$ ${C_{\rm D}}$ ${C_{\rm L}}$
无附属 0 0.794 ?0.544 0.729 ?0.183 0.786 0.471
公路栏杆 0.4 0.835 ?0.333 0.779 ?0.028 0.823 0.291
铁路挡渣墙 0.9 0.859 ?0.216 0.808 0.066 0.856 0.373
栏杆+挡渣墙 1.3 0.940 ?0.254 0.836 0.053 0.866 0.379
表 3  当风攻角为−3°、0°及3°时附属物对阻力系数和升力系数的影响
图 11  公路车辆模型尺寸
图 12  铁路车辆模型尺寸
图 13  公路及铁路车辆布置
图 14  不同交通条件下的三分力系数对比
1 高宗余, 梅新咏, 徐伟, 等 沪通长江大桥总体设计[J]. 桥梁建设, 2015, 45 (6): 1- 6
GAO Zong-yu, MEI Xin-yong, XU Wei, et al Overall design of Hutong Changjiang River Bridge[J]. Bridge Construction, 2015, 45 (6): 1- 6
2 高亮, 刘建新, 张丹 桁架桥主梁三分力系数试验[J]. 长安大学学报: 自然科学版, 2012, (1): 52- 56
GAO Liang, LIU Jian-xin, ZHANG Dan Experimental study on three-component force coefficients of truss girder cross-section[J]. Journal of Chang'an University: Natural Science Edition, 2012, (1): 52- 56
doi: 10.3969/j.issn.1671-8879.2012.01.011
3 李永乐, 徐昕宇, 郭建明, 等 六线双层铁路钢桁桥车桥系统气动特性风洞试验研究[J]. 工程力学, 2016, (04): 130- 135
LI Yong-le, XU Xin-yu, GUO Jian-ming, et al Wind tunnel tests on aerodynamic characteristics of vehicle-bridge system for six-track double-deck steel-truss railway bridge[J]. Engineering Mechanics, 2016, (04): 130- 135
4 王福军. 计算流体力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 1-2.
5 项海帆, 葛耀君 现代桥梁抗风理论及其应用[J]. 力学与实践, 2007, 29 (1): 1- 13
XIANG Hai-fan, GE Yao-jun Modern theory for wind resistant bridge and its application[J]. Mechanics in Engineering, 2007, 29 (1): 1- 13
doi: 10.3969/j.issn.1000-0879.2007.01.001
6 汪家继, 樊健生, 聂建国, 等 大跨度桥梁箱梁的三分力系数识别研究[J]. 工程力学, 2016, (1): 95- 104
WANG Jia-ji, FAN Jian-sheng, NIE Jian-guo, et al Computational study on static coefficients of box girder section for long-span bridges[J]. Engineering mechanics, 2016, (1): 95- 104
7 沈自力 基于CFD的桁架桥气动参数研究[J]. 铁道科学与工程学报, 2015, (8): 852- 858
SHEN Zi-li Research on aerodynamic parameter of truss bridge based on CFD theory[J]. Journal of Railway Science and Engineering, 2015, (8): 852- 858
8 李永乐, 安伟胜, 蔡宪棠 倒梯形板桁主梁CFD简化模型及气动特性研究[J]. 工程力学, 2011, 28 (1): 103- 109
LI Yong-le, AN Wei-sheng, CAI Xiantang Simplified CFD modal and aerodynamic characteristics of inverted trape-zoidal plate-truss deck[J]. Engineering Mechanics, 2011, 28 (1): 103- 109
9 邹明伟, 郑史雄, 唐煜, 等 倒梯形桁架桥断面气动参数研究[J]. 铁道标准设计, 2018, 62 (3): 53- 57
ZOU Ming-wei, ZHENG Shi-xiong, TANG Yu, et al Study on aerodynamic parameters of inverted trapezoid section of truss bridge[J]. Railway Stand Design, 2018, 62 (3): 53- 57
10 中华人民共和国交通部. 公路桥梁抗风设计规范: JTG/T D60-01-2004, [S]. 北京: 人民交通出版社, 2004.
11 国家铁路局. 铁路桥涵设计规范: TB 10002-2017 [S]. 北京: 中国铁道出版社, 2017.
12 埃米尔·希缪, 罗伯特·H·坎伦. 风对结构的作用: 风工程导论[M]. 上海: 同济大学出版社, 1992: 289.
13 李加武, 张宏杰, 韩万水 斜拉桥风致响应的雷诺数效应[J]. 中国公路学报, 2009, (2): 42- 47
LI Jia-wu, ZHANG Hong-jie, HAN Wan-shui Wind-induced response of cable-stayed bridge with consideration of Reynolds number effect[J]. China Journal of Highway and transport, 2009, (2): 42- 47
doi: 10.3321/j.issn:1001-7372.2009.02.008
14 JAKOBSEN J B, ANDERSEN T L, MACDONALD J H G, et al Wind-induced response and excitation characteristics of an inclined cable model in the critical Reynolds number range[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 110 (11): 100- 112
15 LEE S, KWON S D, YOON J Reynolds number sensitivity to aerodynamic forces of twin box bridge girder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 127 (127): 59- 68
16 ZHANG W, CAI C S, PAN F Fatigue reliability assessment for long-span bridges under combined dynamic loads from winds and vehicles[J]. Journal of Bridge Engineering, 2013, 18 (8): 735- 747
doi: 10.1061/(ASCE)BE.1943-5592.0000411
17 WANG T, HAN W S, YANG F, et al Wind-vehicle-bridge coupled vibration analysis based on random traffic flow simulation[J]. Journal of Traffic and Transportation Engineering (English Edition), 2014, 1 (4): 293- 308
doi: 10.1016/S2095-7564(15)30274-9
18 POSPí?IL S, BULJAC A, KOZMAR H, et al Influence of stationary vehicles on bridge aerodynamic and aeroelastic coefficients[J]. Journal of Bridge Engineering, 2016, 22 (4): 05016012
19 WU J, ZHOU Y, CHEN S Wind-induced performance of long-span bridge with modified cross-section profiles by stochastic traffic[J]. Applied Mechanics and Materials, 2012, 41 (3): 464- 476
20 HAN Y, HU J, CAI C S, et al Experimental and numerical studies of aerodynamic forces on vehicles and bridges[J]. Wind and Structures an International Journal, 2013, 17 (2): 163- 184
doi: 10.12989/was.2013.17.2.163
21 HAN Y, LIU S, HU J X, et al Experimental study on aerodynamic derivatives of a bridge cross-section under different traffic flows[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 133: 250- 262
doi: 10.1016/j.jweia.2014.08.003
22 HAN Y, LIU S, CAI C S, et al The influence of vehicles on the flutter stability of a long-span suspension bridge[J]. Wind and Structures an International Journal, 2015, 20 (2): 275- 292
doi: 10.12989/was.2015.20.2.275
23 陈政清. 桥梁风工程[M]. 北京: 人民交通出版社, 2005: 55-56.
24 SIMIU E, SCANLAN R H. Wind effects on structures: an introduction to wind engineering [M]. 3rd ed. New York: The Macmillan Company, 1996: 59.
25 刘志文, 胡建华, 陈政清, 等 闭口箱形主梁断面三分力系数二维大涡模拟[J]. 公路交通科技, 2011, 28 (11): 61- 66
LIU Zhi-wen, HU Jian-hua, CHEN Zheng-qing, et al 2D large eddy simulation of aerostatic coefficients of a closed-box main girder section[J]. Chinese Journal of Highway and Transportation Research and Development, 2011, 28 (11): 61- 66
doi: 10.3969/j.issn.1002-0268.2011.11.011
[1] 于梦婷,汪怡平,苏楚奇,陶琦,史建鹏. 尾随半挂车队列行进的轿车燃油经济性研究[J]. 浙江大学学报(工学版), 2021, 55(3): 455-461.
[2] 曾超峰,王硕,袁志成,薛秀丽. 考虑邻近结构阻隔影响的基坑开挖前降水引发地层变形的特性[J]. 浙江大学学报(工学版), 2021, 55(2): 338-347.
[3] 沈国辉,包玉南,郭勇,宋刚,王轶文. 输电线顺线路方向风荷载及分配模式[J]. 浙江大学学报(工学版), 2020, 54(9): 1658-1665.
[4] 赵伟国,路佳佳,赵富荣. 基于缝隙射流原理的离心泵空化控制研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1785-1794.
[5] 张尧,刘强,刘旭楠,许国栋,洪晓,周水华,刘维杰,赵西增. 韵律沙坝触发的裂流动态性研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1849-1857.
[6] 杨松松,王梅,杜建安,郭勇,耿炎. 管幕预筑法顶管施工顺序对地表沉降的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1706-1714.
[7] 余亚波,邓亚东. 燃料电池客车高压舱氢气泄漏扩散[J]. 浙江大学学报(工学版), 2020, 54(2): 381-388.
[8] 张玉琦,蒋楠,贾永胜,周传波,罗学东,吴廷尧. 运营充水状态高密度聚乙烯管的爆破振动响应特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2120-2127.
[9] 邱文亮,胡哈斯,田甜,张哲. 影响钢管混凝土组合桥墩抗震性能的结构参数[J]. 浙江大学学报(工学版), 2019, 53(5): 889-898.
[10] 夏晋,金世杰,何晓宇,徐小梅,金伟良. 电势条件对混凝土结构电化学修复数值模拟的影响[J]. 浙江大学学报(工学版), 2019, 53(12): 2298-2308.
[11] 向羽,张树哲,李俊峰,魏正英,杨理想,姜立昊. Ti6Al4V的激光选区熔化单道成形数值模拟与实验验证[J]. 浙江大学学报(工学版), 2019, 53(11): 2102-2109.
[12] 黄铭枫,叶何凯,楼文娟,孙轩涛,叶建云. 考虑风速风向分布的干煤棚结构风振疲劳分析[J]. 浙江大学学报(工学版), 2019, 53(10): 1916-1926.
[13] 楼文娟, 梁洪超, 卞荣. 基于杆件荷载的角钢输电塔风荷载体型系数计算[J]. 浙江大学学报(工学版), 2018, 52(9): 1631-1637.
[14] 刘勃锴, 高宏力, 吴颖川, 张小庆, 李世超. 脉冲燃烧风洞新型悬挂式测力系统[J]. 浙江大学学报(工学版), 2018, 52(4): 619-627.
[15] 陈文卓, 陈雁, 张伟明, 何少炜, 黎波, 姜俊泽. 圆弧面动态空气喷涂数值模拟[J]. 浙江大学学报(工学版), 2018, 52(12): 2406-2413.