Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (4): 619-627    DOI: 10.3785/j.issn.1008-973X.2018.04.002
机械工程     
脉冲燃烧风洞新型悬挂式测力系统
刘勃锴1, 高宏力1, 吴颖川2, 张小庆2, 李世超1
1. 西南交通大学 机械工程学院, 四川 成都 610000;
2. 中国空气动力研究与发展中心 超高速气动力研究所, 四川 绵阳 621000
New suspension force measuring system in impulse combustion wind tunnel
LIU Bo-kai1, GAO Hong-li1, WU Ying-chuan2, ZHANG Xiao-qing2, LI Shi-chao1
1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610000, China;
2. Air-breathing Hypersonic Technology Research Center, China Aerodynamics Research and Development Center, Mianyang 621000, China
 全文: PDF(10400 KB)   HTML
摘要:

针对高超声速风洞试验中存在的支架干扰问题和内式天平占用带动力试验模型内部功能性空间问题,提出新型悬挂式测力系统.该系统基于盒式天平原理,试验模型、响应拉杆和支撑框架分别作为浮动框、带传感弹性连杆和固定框,将三者作为测力系统的整体来开展研究,不单独设计内式天平.响应拉杆杆体设计为铰链形式,实现空气动力的机械分解,拉杆固定端为轮辐式结构,轮辐条上的应变计组为惠斯顿全桥,实现空气动力的电气分解.在流固耦合方面的计算结果表明,悬挂式测力方案相比传统方案在升力测量上的干扰降低了约11%,在模态、强度和刚度等方面均能满足脉冲燃烧风洞试验的要求.

Abstract:

A new suspension force measuring system was proposed in order to solve the problem that support interference exists in hypersonic wind tunnel tests and internal balance occupies model's functional space in test with propellers. The system was based on the principal of box balance. The test model, response rods and support frame were used as floating frame, elastic linkages with sensitive elements and fixed frame respectively. These three parts were taken as a holistic system to conduct research instead of designing internal balance alone. The body of response rod was in the form of hinge to realize mechanical decomposition of aerodynamic loads. The fixed end of the rod was designed as a spoke type structure. The strain gauges set on wheel spokes made up Wheatstone bridges in order to realize electrical decomposition of aerodynamic loads. The calculation results of fluid solid coupling indicated the interference of lift-force measured by the new scheme was approximately 11% lower than that by the traditional scheme. The new system can meet the requirements of impulse combustion wind tunnel test in modal, strength and stiffness aspects.

收稿日期: 2017-09-29
CLC:  TH823  
基金资助:

高超声速冲压发动机技术重点实验室基金资助项目(STS/MY-ZY-2015-007);国家自然科学基金资助项目(51775452).

通讯作者: 高宏力,男,教授,博导.orcid.org/0000-0002-6175-9964.     E-mail: hongli_gao@swjtu.cn
作者简介: 刘勃锴(1991-),男,博士生,从事风洞测力技术的研究.orcid.org/0000-0002-6192-013X.E-mail:bk_liu1991@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

刘勃锴, 高宏力, 吴颖川, 张小庆, 李世超. 脉冲燃烧风洞新型悬挂式测力系统[J]. 浙江大学学报(工学版), 2018, 52(4): 619-627.

LIU Bo-kai, GAO Hong-li, WU Ying-chuan, ZHANG Xiao-qing, LI Shi-chao. New suspension force measuring system in impulse combustion wind tunnel. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(4): 619-627.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.04.002        http://www.zjujournals.com/eng/CN/Y2018/V52/I4/619

[1] 乐嘉陵. 吸气式高超声速技术研究进展[J]. 推进技术, 2010,31(6):641-649. LE Jia-ling. Progress in air-breathing hypersonic technology[J]. Journal of Propulsion Technology, 2010,31(6):641-649.
[2] 刘伟雄, 谭宇, 毛雄兵, 等. 一种新运行方式脉冲燃烧风洞研制及初步应用[J]. 实验流体力学, 2007, 21(4):59-64. LIU Wei-xiong, TAN Yu, MAO Xiong-bing, et al. The development and preliminary application of a pulse combustion wind tunnel with new running way[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(4):59-64.
[3] ZENG H, BAI H, ZHU T. X-51A Scramjet engine flight and demonstration program[J]. Missiles and Space Vehicles, 2010, 29(1):57-61.
[4] 贺元元, 贺伟, 张小庆, 等. 燃烧加热脉冲风洞气动/推进一体化试验研究[J]. 推进技术, 2017, 38(08):1741-1746. HE Yuan-yuan,HE Wei,ZHANG Xiao-qing,et al. Aero-propulsion integration test in combustion heated impulse facility[J]. Journal of Propulsion Technology, 2017, 38(08):1741-1746.
[5] HANNEMANN K, MARTINEZ S J, LAURENCE S, et al. Free flight testing of a scramjet engine in a large scale shock tunnel[C]//20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Glasgow, Scotland:AIAA, 2015.
[6] SCHRAMM J M, HANNEMANN K, KARL S, et al. Ground testing synthesis of the LAPCAT Ⅱ small scale flight experiment configuration scramjet flow path[C]//International Space Planes and Hypersonic Systems and Technology Conference. Glasgow:AIAA, 2015.
[7] DUFRENE A, MACLEAN M G, HOLDEN M S. Missile stage separation testing in CUBRC hypersonic tunnels[C]//AIAA Missile Sciences Conference. Monterey:AIAA, 2010.
[8] 于卫青, 刘高计, 李通, 等. 弹箭模型高速风洞张线支撑干扰试验方案研究[J]. 弹箭与制导学报, 2014, 34(5):144-147. YU Wei-qing,LIU Gao-ji,LI Tong, et al. Research on the missiles hanging brace interference test in high-speed wind tunnel[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2014, 34(5):144-147.
[9] 张平, 赵长辉, 刘博宇. 套筒式张线天平的研制[J]. 实验流体力学, 2012, 26(4):101-104. ZHANG Ping, ZHAO Chang-hui, LIU Bo-yu. Development of sleeve type wired balance[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(4):101-104.
[10] 沈礼敏, 沈志宏. 低速风洞大攻角张线式支撑系统[J]. 气动研究与实验, 1998, 15(3):10. SHEN Li-min, SHEN Zhi-hong. A wire type-support system for high angle of attack test in low speed wind tunnel[J]. Aerodynamic Research and Experiment, 1998, 15(3):10.
[11] HOLDEN M S, WADHAMS T, MUNDY E, et al. Boundary layer transition and thrust and drag measurements with a full-scale X51 configuration at duplicated flight conditions in the LENS Ⅱ hypervelocity tunnel[C]//58th JPM/44th Combustion/32nd Airbreathing Propulsion Joint Subcommittee Meeting. Arlington, VA:The JANNAF Journal of Propulsion and Energetics, 2011.
[12] 胡正红,彭苗娇,冀洋锋,等. 高超声速风洞WDPR支撑尖锥模型应用可行性分析[J]. 北京航空航天大学学报, 2017, 43(11):2293-2301. HU Zheng-hong, PENG Miao-jiao, JI Yang-feng, et al. Feasibility analysis of WDPR support cone model in hypersonic wind tunnel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11):2293-2301.
[13] 吕金洲, 张小庆, 高宏力, 等. 脉冲燃烧风洞测力天平动力学建模与分析[J]. 噪声与振动控制, 2015, 35(1):182-186. LV Jin-zhou, ZHANG Xiao-qing, GAO Hong-li, et al. Structural dynamics modeling and analysis of the force balance for an impulse combustion wind tunnel[J]. Noise and Vibration Control, 2015, 35(1):182-186.
[14] 杨春宁, 方家为, 李春, 等. 基于稳定性判据的高超声速复合控制方法[J]. 浙江大学学报:工学版, 2017, 51(2):422-428. YANG Chun-ning, FANG Jia-wei, LI Chun, et al. Hypersonic vehicle blended control methodology based on stability criterion[J]. Journal of Zhejiang University:Engineering Science, 2017, 51(2):422-428.
[15] 唐伟, 曾磊, 冯毅, 等. 升力体机动飞行器气动布局概念设计[J]. 空气动力学学报, 2011, 29(03):370-373. TANG Wei,ZENG Lei,FENG Yi,et al. Aerodynamic configuration conceptional design for high maneuverable lift body with flaps[J]. Acta Aerodynamica Sinica, 2011, 29(03):370-373.
[16] LYNN K C, COMMO S A, PARKER P A. Wind-tunnel force balance characterization for hypersonic research applications[J]. Journal of Aircraft, 2015, 49(2):556-565.
[17] KNISKERN M W. Analysis of a six-component, flow-through, strain-gage, force balance used for hypersonic wind tunnel models with scramjet exhaust flow simulation[D]. Raleigh:North Carolina State University, 1990.
[18] 舒海峰. 高超声速风洞铰链力矩试验技术研究[D]. 绵阳:中国空气动力研究与发展中心, 2006. SHU Hai-feng. Research on hinge moment test technology in hypersonic wind tunnel[D]. Mianyang:CARDC, 2006.
[19] ZHANG J, YANG J, LONG Z. Research of optical measure technique for wind tunnel model attitude angle based on PSD[J]. Optical Technique, 2012, 38(6):683-688.

No related articles found!