Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (10): 1916-1926    DOI: 10.3785/j.issn.1008-973X.2019.10.009
土木工程     
考虑风速风向分布的干煤棚结构风振疲劳分析
黄铭枫1(),叶何凯1,楼文娟1,孙轩涛1,叶建云2
1. 浙江大学 结构工程研究所,浙江 杭州 310058
2. 浙江送变电工程有限公司,浙江 杭州 310016
Wind-induced vibration and fatigue analysis of long span lattice structures considering distribution of wind speed and direction
Ming-feng HUANG1(),He-kai YE1,Wen-juan LOU1,Xuan-tao SUN1,Jian-yun YE2
1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China
2. Zhejiang Electric Power Transmission and Transformation Corporation, Hangzhou 310016, China
 全文: PDF(5145 KB)   HTML
摘要:

针对大跨开敞式干煤棚结构在风荷载作用下易发生风致疲劳破坏的问题,基于干煤棚结构的多点同步测压风洞试验结果,结合Miner疲劳线性累积损伤理论,分别采用雨流法、等效应力法、等效窄带法和等效宽带法等时域与频域内多种方法,计算得到干煤棚网架的风致疲劳损伤结果. 通过建立风速风向联合概率密度函数,考虑煤棚所在地实际风速风向联合分布特性对风致疲劳损伤分析的影响,利用高强螺栓应力经验公式,估算网架结构球节点的疲劳损伤. 结果表明,等效宽带法是频域法中较精确的疲劳损伤计算方法. 与其他风向角相比,干煤棚网架结构在40°~60°斜风向作用下更容易引发疲劳损伤. 在考虑风速风向联合分布的条件下,螺栓球节点的年均累积疲劳损伤比杆件本身更显著.

关键词: 风洞试验风振分析疲劳分析风速风向联合分布    
Abstract:

Wind-induced vibration related fatigue analysis of a long-span lattice structure was performed both in the time and frequency domains based on the multiple point pressure measurement wind tunnel test data according to the Miner’s linear cumulative damage theory in order to analyze the wind-induced fatigue damage of long span lattice structures under wind load. Four methods were applied for estimating wind-induced damage on the structure, i.e., the time domain rain-flow method, the equivalent stress method, the equivalent narrow band method and the equivalent wide band method. The influences of the joint distribution of wind speed and direction on the fatigue damage of the structure were carefully assessed by constructing the joint probabilistic distribution function. The wind-induced fatigue damage of spherical joints in the steel lattice structure was evaluated with the empirical formula of high-strength bolt stresses. Results show that the equivalent wide band method is a more accurate method for fatigue damage calculation in frequency domain. The fatigue damage of the lattice structure is more likely to occur under the wind directions of 40°~60° compared with other wind direction angles. The cumulative fatigue damage of spherical joints is more significant than that of the structural members themselves considering the joint distribution of wind speed and direction.

Key words: wind tunnel test    vibration analysis    fatigue analysis    joint distribution of wind speed and direction
收稿日期: 2018-11-07 出版日期: 2019-09-30
CLC:  TU 312  
作者简介: 黄铭枫(1976—),男,教授,从事结构风工程的研究. orcid.org/0000-0002-3741-7550. E-mail: mfhuang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
黄铭枫
叶何凯
楼文娟
孙轩涛
叶建云

引用本文:

黄铭枫,叶何凯,楼文娟,孙轩涛,叶建云. 考虑风速风向分布的干煤棚结构风振疲劳分析[J]. 浙江大学学报(工学版), 2019, 53(10): 1916-1926.

Ming-feng HUANG,He-kai YE,Wen-juan LOU,Xuan-tao SUN,Jian-yun YE. Wind-induced vibration and fatigue analysis of long span lattice structures considering distribution of wind speed and direction. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1916-1926.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.10.009        http://www.zjujournals.com/eng/CN/Y2019/V53/I10/1916

图 1  挪威规范中适用空间网壳结构形式的S-N曲线
图 2  干煤棚网架风洞试验模型
图 3  风洞试验模型测点布置图
图 4  风洞试验风场模拟情况
图 5  干煤棚网架有限元模型及60°风向角下关键杆件位置图
图 6  杆件1和杆件9上节点Y向位移时程图
图 7  杆件1和杆件9上节点Z向位移时程图
图 8  关键杆件1和杆件9的应力时程图
图 9  关键杆件1和杆件9的应力功率谱图
图 10  关键杆件应力幅值分布图
10?8
θs/(°) 杆件1 杆件2 杆件3 杆件4 杆件5 杆件6 杆件7 杆件8 杆件9 杆件10
0 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
10 0.72 0.57 0.56 0.42 0.23 0.19 0.16 0.13 0.07 0.03
20 6.54 5.72 5.04 4.77 4.13 2.63 1.60 1.45 1.17 0.89
30 12.48 11.45 10.09 9.30 9.05 6.30 5.11 3.31 3.07 2.72
40 27.28 25.82 24.02 21.73 21.60 15.95 14.74 13.56 12.51 11.06
50 30.44 29.19 17.23 15.05 12.66 8.61 6.50 6.46 5.14 4.36
60 45.67 39.23 33.83 33.06 27.57 18.70 15.57 15.40 14.84 11.26
70 12.52 10.77 10.29 8.72 7.43 5.16 4.75 4.00 2.58 1.99
80 1.49 1.09 1.02 0.71 0.52 0.29 0.21 0.15 0.13 0.13
90 0.75 0.52 0.51 0.29 0.22 0.22 0.17 0.14 0.03 0.03
120 22.07 18.28 16.02 14.24 13.10 8.72 6.84 6.72 6.58 4.23
140 33.97 31.06 27.23 24.94 23.04 17.66 14.08 13.50 8.52 8.51
180 0.07 0.07 0.06 0.05 0.05 0.04 0.02 0.02 0.02 0.01
200 8.65 7.30 6.28 5.65 5.24 3.47 2.45 2.27 2.19 1.05
220 43.79 41.30 37.49 33.55 30.77 23.89 19.67 17.51 14.17 14.09
270 0.51 0.36 0.27 0.22 0.22 0.17 0.15 0.13 0.12 0.11
310 23.75 21.13 18.57 16.81 16.01 11.27 9.66 8.92 8.00 5.36
表 1  各风向角下应力幅最大的10根杆件疲劳损伤
图 11  各风向角下疲劳损伤最大杆件位置示意图(下弦)
杆件序号 D/10?8 w/%
雨流法 等效应力法 等效窄带法 等效宽带法 等效应力法 等效窄带法 等效宽带法
1 30.44 46.55 38.91 32.65 52.92 27.83 7.26
2 29.19 42.12 35.79 32.89 44.30 22.62 12.70
3 17.23 23.39 21.06 20.74 35.75 22.20 20.37
4 15.05 22.25 18.02 13.19 47.89 19.76 ?12.37
5 12.66 15.87 15.32 15.97 25.33 21.01 26.10
6 8.61 9.94 11.05 11.05 15.45 28.34 28.34
7 6.50 9.82 9.08 6.63 51.05 39.66 1.87
8 6.46 6.87 8.34 9.06 6.38 29.12 40.17
9 5.14 6.41 6.80 5.59 24.72 32.31 8.79
10 4.36 5.17 5.60 5.23 18.57 28.31 19.98
表 2  50°风向角下10根关键杆件疲劳损伤计算结果对比
图 12  苍南干煤棚周边地貌图
图 13  1977—2016年日最大风速序列
图 14  1977—2016年日最大风速对应风向玫瑰图
图 15  风速风向联合概率密度函数
杆件 D×t/(mm×mm) S/mm2 $\sigma $/MPa D/10?6
1 159×8 1 947 88.8 6.05
2 159×8 1 947 87.8 5.87
3 180×10 2 748 86.0 5.49
4 159×8 1 947 85.0 5.31
5 159×8 1 947 80.2 4.42
6 219×10 3 360 75.3 3.66
7 159×6 1 470 71.9 3.18
8 159×8 1 947 69.9 2.93
9 180×8 2 211 63.8 2.24
10 159×6 1 470 63.5 2.19
表 3  60°风向角下关键杆件截面尺寸、时均应力值及疲劳损伤
图 16  螺栓球节点构造图
图 17  关键螺栓球节点位置示意图
螺栓球编号 D/10?2 T/a
3.17 31.55
3.08 32.47
2.88 34.72
2.78 35.97
2.32 43.10
1.92 52.08
1.67 59.88
1.54 64.94
1.17 85.47
1.15 86.96
表 4  关键螺栓球节点年累积疲劳损伤和疲劳寿命
1 MATSUISKI M, ENDO T Fatigue of metals subjected to varying stress[J]. Japan Society of Mechanical Engineers, 1968, 68 (2): 37- 40
2 HUANG X, HANCOCK J W A reliability analysis of fatigue crack growth under random loading[J]. Fatigue Fracture Engineering of Material Structures, 1989, 12 (3): 247- 258
doi: 10.1111/ffe.1989.12.issue-3
3 CHAUDHURY G K, DOVER W Fatigue analysis of offshore platforms subject to sea wave loading[J]. International Journal of Fatigue, 1985, 7 (1): 13- 19
doi: 10.1016/0142-1123(85)90003-9
4 CHOW C L, LI D L An analytical solution for fast fatigue assessment under wide-band random loading[J]. International Journal of Fatigue, 1991, 13 (5): 395- 404
doi: 10.1016/0142-1123(91)90596-Q
5 CRANDALL S H, MARK W D. Random vibration in mechanical systems [M]. New York: Aedaemie Press, 1963: 103-126.
6 WIRSCHING P H Fatigue under wide band random stresses[J]. Journal of the Structure Division, 1980, 106 (7): 1593- 1607
7 王之宏 桅杆结构的风振疲劳分析[J]. 特种结构, 1994, 11 (3): 3- 8
WANG Zhi-hong Analysis of wind-induced fatigue in guyed steel masts[J]. Special Structures, 1994, 11 (3): 3- 8
doi: 10.3969/j.issn.1001-3598.1994.03.002
8 屠海明, 邓洪洲 基于频域的桅杆结构风振疲劳分析[J]. 特种结构, 1999, 15 (4): 34- 36
TU Hai-ming, DENG Hong-zhou The study of guyed mast fatigue based on stress spectrum under wind vibration[J]. Special Structures, 1999, 15 (4): 34- 36
doi: 10.3969/j.issn.1001-3598.1999.04.011
9 邓洪洲, 温应龙, 何鹏飞 格构式桅杆顺风向风振疲劳可靠性分析[J]. 特种结构, 2004, 21 (2): 31- 35
DENG Hong-zhou, WEN Ying-long, HE Peng-fei Analysis of fatigue reliability of the lattice guyed-mast along wind vibration[J]. Special Structures, 2004, 21 (2): 31- 35
doi: 10.3969/j.issn.1001-3598.2004.02.013
10 王世村, 孙炳楠, 叶尹 自立式单杆输电塔顺风向风振疲劳分析[J]. 浙江大学学报:工学版, 2005, 39 (12): 1880- 1884
WANG Shi-cun, SUN Bing-nan, YE Yin Analysis on alongwind fatigue of free standing single rod transmission tower[J]. Journal of Zhejiang University: Engineering Science, 2005, 39 (12): 1880- 1884
11 王世村. 高耸结构风振响应和风振疲劳分析[D]. 杭州: 浙江大学, 2005.
WANG Shi-cun. Studies of wind-induced vibration and wind-induced fatigue on high-rise structures [D]. Hangzhou: Zhejiang University, 2005.
12 HOLMES J D Fatigue life under along-wind loading: closed-form solution[J]. Engineering Structures, 2002, 24 (1): 109- 114
doi: 10.1016/S0141-0296(01)00073-6
13 REPETTO M P, SOLARI G Directional wind-induced fatigue of slender vertical structure[J]. Journal of Structure Engineering, 2004, 130 (7): 1032- 1040
doi: 10.1061/(ASCE)0733-9445(2004)130:7(1032)
14 REPETTO M P, SOLARI G Bimodal alongwind fatigue of structures[J]. Journal of Structure Engineering, 2006, 132 (6): 899- 908
doi: 10.1061/(ASCE)0733-9445(2006)132:6(899)
15 REPETTO M P, SOLARI G Closed form solution of the alongwind-induced fatigue damage to structures[J]. Engineering Structures, 2009, 31 (10): 2414- 2425
doi: 10.1016/j.engstruct.2009.05.016
16 REPETTO M P, TORRIELLI A Long term simulation of wind-induced fatigue loadings[J]. Engineering Structures, 2017, 132 (1): 551- 561
17 GU M, XU Y L, CHEN L Z, et al Fatigue life estimation of steel girder of Yangpu cable -stayed bridge due to buffeting[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 80 (3): 383- 400
doi: 10.1016/S0167-6105(98)00209-8
18 XU Y L, LIU T T, ZHANG W S Buffeting-induced fatigue damage assessment of a long suspension bridge[J]. International Journal of Fatigue, 2009, 31 (3): 575- 586
doi: 10.1016/j.ijfatigue.2008.03.031
19 王钦华, 顾明 风速风向联合分布对结构风致疲劳寿命可靠性的影响[J]. 振动与冲击, 2009, 28 (12): 167- 171
WANG Qin-hua, GU Ming Influence of joint distribution of wind speed and wind direction on wind induced fatigue life reliability[J]. Journal of Vibration and Shock, 2009, 28 (12): 167- 171
doi: 10.3969/j.issn.1000-3835.2009.12.040
20 张春涛, 李正良, 范文亮, 等 考虑风向风速联合分布的输电塔线体系风振疲劳研究[J]. 工程力学, 2013, 30 (03): 315- 322
ZHANG Chun-tao, LI Zheng-liang, FAN Wen-liang, et al Study on wind-induced fatigue of transmission tower-line coupled system considering the joint distribution of wind speed and wind direction[J]. Engineering Mechanics, 2013, 30 (03): 315- 322
21 楼文娟, 段志勇, 庄庆华 极值风速风向的联合概率密度函数[J]. 浙江大学学报:工学版, 2017, 51 (06): 1057- 1063
LOU Wen-juan, DUAN Zhi-yong, ZHUANG Qing-hua Joint probability density function of extreme wind speed and direction[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (06): 1057- 1063
22 HUANG M F, HUANG S, FENG H, et al Non-Gaussian time-dependent statistics of wind pressure processes on a roof structure[J]. Wind and Structures, 2016, 23 (4): 275- 300
doi: 10.12989/was.2016.23.4.275
23 余世策, 楼文娟, 孙炳楠, 等 开孔大跨屋盖结构的内部风效应研究[J]. 浙江大学学报:工学版, 2005, 39 (08): 1206- 1211
YU Shi-ce, LOU Wen-juan, SUN Bing-nan, et al Internal wind effect for long-span roof structure with openings[J]. Journal of Zhejiang University: Engineering Science, 2005, 39 (08): 1206- 1211
24 潘峰, 孙炳楠, 楼文娟 大跨开孔结构屋盖风致响应分析的多模态精细时程积分法[J]. 浙江大学学报:工学版, 2007, 41 (06): 1000- 1006
PAN Feng, SUN Bing-nan, LOU Wen-juan Analysis on wind-induced dynamic response for long-span roof of opening structure by multi-modal precise time-integration method[J]. Journal of Zhejiang University: Engineering Science, 2007, 41 (06): 1000- 1006
25 DNV. Fatigue design of offshore steel structures: DNV-PR-C203 [S]. Norway: Det Norske Veritas, 2008: 54-56.
26 MINER M Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12 (3): 159- 164
27 董乐义, 罗俊, 程礼 雨流计数法及其在程序中的具体实现[J]. 计测技术, 2004, 24 (3): 38- 40
DONG Le-yi, LUO Jun, CHENG Li Rain flow count method and its realization in programming[J]. Aviation Metrology and Measurement Technology, 2004, 24 (3): 38- 40
doi: 10.3969/j.issn.1674-5795.2004.03.014
28 PETRUCCI G, ZUCCARELLO B Fatigue life prediction under wide band random loading[J]. Fatigue and Fracture of Engineering Materials and Structures, 2004, 27 (12): 1183- 1195
doi: 10.1111/ffe.2004.27.issue-12
29 雷宏刚, 裴艳, 刘丽君 高强度螺栓疲劳缺口系数的有限元分析[J]. 工程力学, 2008, (增1): 49- 53
LEI Hong-gang, PEI Yan, LIU Li-jun FEA analysis of fatigue notch coefficients for high-strength bolts[J]. Engineering Mechanics, 2008, (增1): 49- 53
[1] 沈国辉,包玉南,郭勇,宋刚,王轶文. 输电线顺线路方向风荷载及分配模式[J]. 浙江大学学报(工学版), 2020, 54(9): 1658-1665.
[2] 刘昊苏,雷俊卿. 大跨度双层桁架主梁三分力系数识别[J]. 浙江大学学报(工学版), 2019, 53(6): 1092-1100.
[3] 楼文娟, 梁洪超, 卞荣. 基于杆件荷载的角钢输电塔风荷载体型系数计算[J]. 浙江大学学报(工学版), 2018, 52(9): 1631-1637.
[4] 刘勃锴, 高宏力, 吴颖川, 张小庆, 李世超. 脉冲燃烧风洞新型悬挂式测力系统[J]. 浙江大学学报(工学版), 2018, 52(4): 619-627.
[5] 张扬, 沈国辉, 余世策, 马郁葱, 张瑞. 输电线风噪声的声学风洞试验[J]. 浙江大学学报(工学版), 2017, 51(8): 1494-1499.
[6] 徐海巍, 楼文娟, 李天昊, 梁洪超, 章李刚, 卢明. 微地形下输电线路跳线的风偏分析[J]. 浙江大学学报(工学版), 2017, 51(2): 264-272.
[7] 沈国辉, 姚旦, 余世策, 楼文娟,邢月龙, 潘峰. 单山和双山风场特性的风洞试验[J]. 浙江大学学报(工学版), 2016, 50(5): 805-812.
[8] 赵阳,林寅,余世策. 大型低矮圆柱壳结构风荷载特性的风洞试验[J]. 浙江大学学报(工学版), 2014, 48(5): 820-826.
[9] 罗尧治,孙斌. 建筑物周围风致静压场的风洞试验及数值模拟[J]. J4, 2013, 47(7): 1148-1156.
[10] 罗尧治, 丁慧. 波纹表面月牙形悬挑屋盖风荷载特性[J]. J4, 2013, 47(6): 1063-1071.
[11] 陈勇, 王旭, 孙炳楠, 李庆祥, 陈水福. 单体房间室内通风多影响因素的试验研究[J]. J4, 2012, 46(4): 658-664.
[12] 林巍, 楼文娟, 申屠团兵, 黄铭枫. 高层建筑脉动风压的非高斯峰值因子方法[J]. J4, 2012, 46(4): 691-697.
[13] 沈国辉, 王宁博, 孙炳楠,楼文娟. 基于风洞试验的高层建筑风致响应和
等效风荷载计算
[J]. J4, 2012, 46(3): 448-453.
[14] 王旭,陈勇,孙炳楠,陈水福,李庆祥. 行列式布局建筑群风环境的试验及优化设计[J]. J4, 2012, 46(3): 454-462.
[15] 陈勇, 陈超, 金新阳, 王旭, 孙炳楠, 陈水福. 基于决策融合的风环境评价标准风洞试验研究[J]. J4, 2012, 46(12): 2210-2214.