Please wait a minute...
浙江大学学报(工学版)
土木工程     
似平面应力条件下混凝土的变形特性
李静, 王哲
北京交通大学 土木建筑工程学院,北京 100044
Deformation properties of concrete under quasi plane stress sate
LI Jing, WANG Zhe
School of Civil Engineering, Beijing Jiao Tong University, Beijing 100044, China
 全文: PDF(1803 KB)   HTML
摘要:

采用真三轴设备对100 mm×100 mm×100 mm的立方体混凝土试块进行静态加载:1)保持3个轴向的应力相同,施加应力到试验设计值p;2)在保持最小主应力(Z轴)恒定,并且X轴应变速率与Y轴应变速率之比恒定的条件下,单调地增加Y轴应变.p的取值有三档,分别为10、15和20 MPa;每一档p对应的应变速率比的取值有三档或四档,在0.25、0.5、0.75和1.0中选取.分析试验曲线和数据可知:在加载过程的后半部分,Z轴应变和Y轴应变之间以及Z轴应变和X轴应变之间都近似呈线性关系,但是不同加载路径对应不同的拟合直线斜率.结合相关的微分方程可知,当最小主应力相同,加载应变速率比不同时,可以将Z轴应变分别对X轴和Y轴应变的微分关系回归出相同的数值,它们与破坏形态和剪切带倾角有关.

Abstract:

The specimens (cubes, d=100 mm) were statically loaded into a true triaxial apparatus. 1) The stresses in all three directions were simultaneously increased to a specified value of p. 2) The strain in Y-axis was increased monotonically while maintaining a constant minimum principle stress in Z-axis as well as a constant strain rate ratio between the X-axis and the Y-axis. Three different values of p were chosen, which were 10, 15 and 20 MPa. Three or four strain rate ratios were chosen, which were 0.25, 0.5, 0.75 and 1.0, for each value of p. According to analysis of experimental data and curves, the following conclusions were obtained. In the latter part of loading process, relationship between Z-axial strain and Y-axial strain approximates to linear, as well as the relationship between Z-axial strain and X-axial strain, but the corresponding slopes of fitting lines are different with each other under different load paths. Comparing differential equations with fitting equations of curves, when the minimum principal stress is constant, the same numerical differentiation of Z-axial strain versus X-axial strain and Z-axial strain versus Y-axial strain are calculated for different strain rate ratios, which is related to failure modes and inclination of shear bands.

出版日期: 2017-04-25
CLC:  TU 528  
基金资助:

国家自然科学基金资助项目(51279003, 51078024).

通讯作者: 王哲,男,研究员,博导. ORCID: 0000-0002-4261-9595.     E-mail: zhwang@bjtu.edu.cn
作者简介: 李静(1984—),女,博士生,从事复杂三轴条件下混凝土本构关系的研究. ORCID: 0000-0002-2885-787X. E-mail: 314666466@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

李静, 王哲. 似平面应力条件下混凝土的变形特性[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.04.015.

LI Jing, WANG Zhe. Deformation properties of concrete under quasi plane stress sate. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.04.015.

[1] KUPFER H B, HILSDRF H K, RUSCH H. Behavior of concrete under biaxial stresses [J]. ACI Materials Journal, 1969, 66(8): 656-666.
[2] 覃丽坤, 宋玉普, 张众, 等. 普通混凝土在非比例加载双轴压下的力学性能试验研究[J]. 建筑结构学报,2008, 20(增l): 74-77.
TAN Li-kun, SONG Yu-pu, ZHANG Zhong, et al. Experimental study on the biaxial mechanical behavior of normal concrete under non-proportion loading [J]. Journal of Building Structure, 2008, 20(supple.l): 74-77.
[3] 覃丽坤,宋玉普,姚家伟,等.普通混凝土双轴强度和变形的试验与理论研究[J],大连民族学院学报,2006,5(34): 14-16.
TAN Li-kun, SONG Yu-pu, YAO Jia-wei, et al. Experimental and theretical study on biaxial strength and deformation of normal concrete [J]. Journal of Dalian Nationalities University, 2006, 5(34): 14-16.
[4] 王浩,王立成,宋玉普.饱和大骨料混凝土动态双轴受压力学性能试验研究[J].大连理工大学学报,2016,56(1): 13-19.
WANG Hao, WANG Li-cheng, SONG Yu-pu. Experimental study of dynamic behavior of saturated dam concrete under biaxial compression [J]. Journal of Dalian University of Technology, 2016, 56(1): 13-19.
[5] 杨健辉,汪洪菊,孟海平,等.高强钢纤维碳纳米管混凝土双轴受压试验与破坏准则[J].土木工程学报,2016,49(11): 35-44.
YANG Jian-hui, WANG Hong-ju, MENG Hai-ping, et al. Biaxial compression tests and failure criteria for high strength steel fiber and carbon nanotube reinforced concrete [J]. China Civil Engineering Journal, 2016, 49(11): 35-44.
[6] JAN G M, VAN MIER J G M. Multiaxial strain-softening of concrete. Part I: fracture [J]. Materials and Structure, 1986, 19(111): 179-190.
[7] REN X D, YANG W Z, ZHOU Y, et al. Behavior of highperformance concrete under uniaxial and biaxial loading [J]. ACI Materials Journal, 2008, 105(6):548-557.
[8] 余自若,安明喆,王志建.双轴压下活性粉末混凝土力学性能[J].建筑材料学报,2011, 14(3): 305-309.
YU Zi-ruo, AN Ming-zhe, WANG Zhi-jian. Mechanical properties of reactive powder concrete under biaxial compression [J]. Journal of Building Materials, 2011, 14(3): 305-309.
[9] 李木国,张群,王静,等.大型液压伺服混凝土静动三轴试验机[J].大连理工大学学报,2003, 43(6): 812-817.
LI Mu-guo, ZHANG Qun, WANG Jing, et al. Large scale static and dynamic concrete hydraulic servo triaxial testing equipment [J]. Journal of Dalian University of Technology, 2003, 43(6): 812-817.
[10] 王哲.平面应变状态下混凝土力学行为的三轴试验研究[J].土木工程学报,2012, 45(10): 62-71.
WANG Zhe. Triaxial experimental study of the mechanical behavior of concrete in plane strain state [J]. China Civil Engineering Journal, 2012, 45(10): 62-71.
[1] 谢磊,李庆华,徐世烺. 活性粉末混凝土冲击压缩性能及本构关系[J]. 浙江大学学报(工学版), 2021, 55(5): 999-1009.
[2] 王小虎,吉克尼都,陈珊,祁宇轩,彭宇,曾强. X射线透射成像技术原位追踪混凝土吸水过程[J]. 浙江大学学报(工学版), 2021, 55(4): 727-732.
[3] 姚勇,杨贞军,张麒. 硅烷涂层提升钢纤维-砂浆界面性能的试验研究[J]. 浙江大学学报(工学版), 2021, 55(1): 1-9.
[4] 葛培,黄炜,李萌. 再生砖骨料混凝土架构模型试验研究[J]. 浙江大学学报(工学版), 2021, 55(1): 10-19.
[5] 王永贵,李帅鹏,HUGHESPeter,范玉辉,高向宇. 改性再生混凝土高温性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2047-2057.
[6] 李庆华,舒程岚青. 超高韧性水泥基复合材料的波传播试验研究[J]. 浙江大学学报(工学版), 2020, 54(5): 851-857.
[7] 李晓田,王楚昕,于永强. 基于颗粒流交互理论的水泥净浆流变分布算法[J]. 浙江大学学报(工学版), 2019, 53(12): 2264-2270.
[8] 夏晋,金世杰,何晓宇,徐小梅,金伟良. 电势条件对混凝土结构电化学修复数值模拟的影响[J]. 浙江大学学报(工学版), 2019, 53(12): 2298-2308.
[9] 王鹏辉,乔宏霞,冯琼,曹辉. 考虑个体差异的氯氧镁水泥混凝土涂层钢筋寿命预测[J]. 浙江大学学报(工学版), 2019, 53(12): 2309-2316.
[10] 欧祖敏, 孙璐. 冻融损伤混凝土的弯曲疲劳寿命可靠性分析[J]. 浙江大学学报(工学版), 2017, 51(6): 1074-1081.
[11] 温小栋, 蔡煜梁, 赵莉, 冯蕾. 凝灰岩机制砂混凝土抗低温硫酸盐侵蚀性[J]. 浙江大学学报(工学版), 2017, 51(3): 532-537.
[12] 熊海贝,曹纪兴,张凤亮. 含加强层框筒结构位移监测方法[J]. 浙江大学学报(工学版), 2016, 50(9): 1752-1760.
[13] 吴萌, 姬永生, 陈晓峰, 张领雷, 陈向东. 超细粉煤灰对碳硫硅钙石型硫酸盐破坏的影响[J]. 浙江大学学报(工学版), 2016, 50(8): 1479-1485.
[14] 熊海贝, 李奔奔, 江佳斐. FRP约束混凝土圆柱应力-应变模型的适用性[J]. 浙江大学学报(工学版), 2015, 49(12): 2363-2375.
[15] 段安, 张大伟, ALNAGGAR Mohammed. 微平面模型模拟ASR作用下混凝土力学行为[J]. 浙江大学学报(工学版), 2015, 49(10): 1939-1945.