Please wait a minute...
浙江大学学报(工学版)
机械工程     
电子机械制动器间隙调整控制策略研究
葛正, 王维锐, 王俊鼎
浙江大学 机械工程学院,浙江 杭州 310027
Control strategy for brake clearance adjustment of electronic mechanical brake
GE Zheng, WANG Wei rui, WANG Jun ding
College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2424 KB)   HTML
摘要:

为了解决现有电子机械制动器(EMB)的间隙调整需要附加机械调节机构或传感检测装置,导致制动器体积增大、成本提高等问题,通过对制动器及制动过程的建模,分析电机电流与制动过程的对应关系,提出基于电流信号识别制动过程临界点的间隙调整控制策略.该策略通过电机电流对时间的微分信息,分别识别出摩擦片与制动盘接触和分离的两个临界点.通过控制电机转速,令制动时制动片与制动盘迅速接触,并在缓解后留下固定的制动间隙.理论分析和实验结果表明,该策略可以准确地控制制动器的制动间隙,消除制动片磨损对制动间隙的不利影响,制动力输出响应时间明显缩短,为电子机械制动器的间隙调整提供一种低成本解决方案.

Abstract:

Additional mechanical adjusting mechanism or sensors are needed to adjust the clearance of the existing electromechanical brake (EMB), which leads to the increase of the brake volume and the cost. A control strategy of clearance adjustment based on the identification of the critical point of the braking process was proposed in order to solve the problem. The brake and braking process was modeled, and the relationship between motor current and braking process was analyzed. The strategy is to distinguish the two critical points of contact and separation between the brake pads and the brake disk by the differential of the motor current and time respectively. Then the brake pads were brought into contact with the brake disk quickly by controlling the motor speed, and a fixed braking clearance was left after the relief. The theoretical analysis and experimental results show that the strategy can accurately control the braking clearance, thus eliminate the adverse effect of wear on the pads. The response time of the braking force output was obviously shortened. The method provides a lowcost solution for clearance adjustment of EMB.

出版日期: 2017-01-01
CLC:  U 463  
基金资助:

浙江省自然科学基金资助项目(LY13E050003).

通讯作者: 王维锐,男,高级工程师. ORCID: 0000-0002-7330-4473.     E-mail: wwrzju@126.com
作者简介: 葛正(1986—),男,博士生,从事车辆底盘及其控制技术的研究. ORCID: 0000-0002-1960-6112.E-mail:gezheng01@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

葛正, 王维锐, 王俊鼎. 电子机械制动器间隙调整控制策略研究[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.01.017.

GE Zheng, WANG Wei rui, WANG Jun ding. Control strategy for brake clearance adjustment of electronic mechanical brake. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.01.017.

[1] 王政军,李星,李源清,等.汽车线控技术的研究现状及展望[J].科技创新导报,2015(21): 89.
WANG Zhengjun, LI Xing, LI Yuanqing, et al. Research status and prospect of automotive X-by-wire technology [J]. Science and Technology Innovation Herald, 2015(21): 89.
[2] 李昂.浅谈汽车线控制动技术与发展[J].电子技术与软件工程,2014(05): 118.
LI Ang. Discussion on automobile brakebywire technology and development [J]. Electronic Technology and Software Engineering, 2014(05): 118.
[3] 王维锐,葛正,傅云峰,等.具有间隙调节功能的车用电子机械制动器:中国,201120510037.0[P].20120725.
WANG Weirui, GE Zheng, FU Yunfeng, et al. Vehicle electronic mechanical brake with gap regulating function: CN, 201120510037.0[P]. 20120725.
[4] SHIN D H, PARK T S, JINS H, et al. Study of mechanism for wear adjustment with electro wedge brake [J]. Key Engineering Materials, 2014, 625: 712-716.
[5] YAO Y. Brake system and method of control with air gap estimation: US, 20150260246A1 [P]. 20140314.
[6] KI Y H, LEE K J, CHEON J S, et al. Design and implementation of a new clamping force estimator in electromechanical brake systems [J]. International Journal of Automotive Technology, 2013, 14(5): 739-745.
[7] JO C, HWANG S, KIM H. Clampingforce control for electromechanical brake [J]. IEEE Transactions onVehicular Technology, 2010, 59(7): 3205-3212.
[8] SHIN D H, PARK T S, JEONG C P, et al. Motor control system and method for wear compensation of electromechanical brake: US, 20150308530A1 [P]. 20151029.
[9] NARULA P, ROBERTS P, KNOOP D. Method and system for setting a braking component running clearance: US, 20160076609A1 [P]. 20160317.
[10] 汪贵平,马建,闫茂德.永磁直流电动机驱动汽车的数学模型\[J\].中国公路学报,2011,24(1): 122-126.
WANG Guiping, MA Jian, YAN Maode. Study of mathematical model of electric vehicle driven by permanent magnet DC motor [J]. China Journal of Highway and Transport, 2011, 24(1): 122-126.
[11] 黄进,叶尚辉.含摩擦环节伺服系统的分析及控制补偿研究[J].机械科学与技术,1999, 18(1): 14.
HUANG Jin, YE Shanghui. Analysis and control of servo system with friction and servo system [J]. Mechanical Science and Technology for Aerospace Engineering, 1999, 18(1): 14.
[12] MARTON L, LANTOS B. Control of mechanical systems with Stribeck friction and backlash [J]. Systems and Control Letters, 2009, 58(2): 141-147.
[13] SARIC S, BAB H A, HOSEINNEZHAD R. Clampforce estimation for a brakebywire system: a sensorfusion approach [J]. IEEE Transactions on Vehicular Technology, 2008, 57(2): 778-786.
[14] 傅云峰.汽车电子机械制动系统设计及其关键技术研究[D].杭州: 浙江大学, 2013.
FU Yunfeng. Automotive electromechanical brake system design and its key technology [D]. Hangzhou: Zhejiang University, 2013.

[1] 张孝良,耿灿,聂佳梅,高乔. 液力忆惯容器装置建模与特性试验[J]. 浙江大学学报(工学版), 2021, 55(3): 430-440.
[2] 施德华,蔡英凤,汪少华,陈龙,朱镇,高立新. 系统效率最优的功率分流式混合动力汽车非线性预测控制[J]. 浙江大学学报(工学版), 2019, 53(12): 2271-2279.
[3] 杨辰龙,吴鹏辉,商晓波,王赵帅. 含沟槽湿式离合器接合特性数值与试验研究[J]. 浙江大学学报(工学版), 2019, 53(7): 1225-1236.
[4] 符升平,李胜波,罗宁,Roman Nikolaevich Polyakov. 换挡工况下湿式换挡离合器变胞机理[J]. 浙江大学学报(工学版), 2019, 53(4): 628-637.
[5] 付宏勋, 赵又群, 林棻, 杜现斌, 倪新伟. 机械弹性车轮稳态侧偏特性的理论与试验分析[J]. 浙江大学学报(工学版), 2017, 51(2): 344-349.
[6] 潘宁, 于良耀, 张雷, 宋健, 张永辉. 电液复合制动系统防抱控制的舒适性[J]. 浙江大学学报(工学版), 2017, 51(1): 9-16.
[7] 王静, 蔡忆昔, 包伟伟, 李慧霞. 离子风强化大功率LED散热的实验研究[J]. 浙江大学学报(工学版), 2016, 50(10): 1952-1958.
[8] 夏玉峰, 任莉, 叶彩红, 王力. 基于RSM的立柱加强板定位布局多目标优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1600-1607.
[9] 程准,鲁植雄,龚佳慧,刁秀永 . 转向系统传递函数的研究及理想传动比获取[J]. 浙江大学学报(工学版), 2016, 50(7): 1276-1283.
[10] 裴晓朋,王国林,周海超,赵璠. 胎面结构设计参数对轮胎振动噪声的影响[J]. 浙江大学学报(工学版), 2016, 50(5): 871-878.
[11] 马浩军,朱绍鹏,俞小莉,许印川,林鼎. 考虑侧倾运动的电动汽车电子差速控制[J]. 浙江大学学报(工学版), 2016, 50(3): 566-573.
[12] 柯俊,史文库,钱琛,李国民,袁可. 复合材料板簧刚度的预测及匹配设计方法[J]. 浙江大学学报(工学版), 2015, 49(11): 2103-2110.
[13] 邱斌斌, 朱绍鹏, 马浩军, 方光明, 应振有, 宁晓斌. 电动车辆驱动控制系统仿真测试平台设计[J]. 浙江大学学报(工学版), 2015, 49(6): 1154-1159.
[14] 邱斌斌,朱绍鹏,马浩军,方光明,应振有,宁晓斌. 电动车辆驱动控制系统仿真测试平台设计[J]. 浙江大学学报(工学版), 2015, 49(2): 4-5.
[15] 唐昉,周晓军,魏燕定. 改善人-车综合性能的变传动比反馈方法[J]. J4, 2014, 48(3): 456-462.