Please wait a minute...
浙江大学学报(工学版)
机械与电气工程     
应用于数字变量马达的高速开关阀
胡小东, 顾临怡, 张范蒙
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州,310027
High-speed on/off valves applied in digital displacement motor
HU Xiao dong, GU Lin yi, ZHANG Fan meng
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1712 KB)   HTML
摘要:

 为了研制满足数字变量马达需要的“高频响、大流量,低开阀压差,低节流损耗”高速开关阀,设计一种新型的二位三通滑阀结构的高速开关阀,采用阀套运动的结构来减小液动力有效的提升阀的开关速度,采用中位死区的结构来实现预降压和预升压以减小开阀压差.通过建立阀套的运动模型和流场动态仿真验证了该阀的快速开关性能及通流能力|同时建立单柱塞配流单元的柱塞腔压力动态模型,验证了低开阀压差的可行性,并确定最佳的中位死区长度|分析不同转速下在不同位置关阀的节流损耗及开阀压差,得到在某一转速下使节流损耗及开阀压差均很小的最佳关阀角度.理论和仿真研究表明,这种新型的二位三通高速开关阀能够满足数字变量马达对高速开关阀的需求.

Abstract:

The valves used in digital displacement motor (DDM) must satisfy four requirements: fast switching response, high flow rate capability, low pressure difference and low throttling losses. A novel two-position three-way spool valve with middle dead-zone and sleeve-moving structure was designed for the requirements. The steady and transient flow force of the moving sleeve decreased, which sped the valve switching. The pressure difference across the valves decreased with the help of dead-zone structure by compressing or decompressing oil in piston volume. The sleeve's kinematics and CFD model were built to verify its fast switching response and large flow rate capability. The instantaneous pressure in one piston chamber was also modeled to analyze valve-opening pressure difference and valve throttling losses at different motor speeds and valve-closing angles. The optimal dead-zone length was found by making the pressure difference small at different load conditions. These analysis reveals that there is always an optimal closing angle corresponding to different motor speeds, which makes the valve opening pressure difference and valve throttling losses all very small simultaneously. Theoretical and simulation research indicates that the novel high-speed on/off valves can greatly satisfy the requirements.

出版日期: 2016-08-01
:     
基金资助:

国家自然科学基金资助的国家重点实验室创新基金资助项目(51221004).

通讯作者: 顾临怡,男,教授.ORCID:0000-0002-3606-8184.     E-mail: lygu@zju.edu.cn
作者简介: 胡小东(1987—),男,博士,从事机电控制、数字液压等研究. ORCID:0000-0002-5938-7508. E-mail: hxdtx@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

胡小东, 顾临怡, 张范蒙. 应用于数字变量马达的高速开关阀[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.08.018.

HU Xiao dong, GU Lin yi, ZHANG Fan meng. High-speed on/off valves applied in digital displacement motor. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.08.018.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.08.018        http://www.zjujournals.com/eng/CN/Y2016/V50/I8/1551

[1] MERRILL K J. Modeling and analysis of active valve control of a digital pumpmotor [D]. Indiana: Purdue university, 2012.
[2] RAMPEN W. The development of digital displacement technology [C]∥ Proceedings of Fluid Power and Motion Control(FPMC 2010). the UK: University of Bath, 2010: 1217.
[3] ARTEMIS INTELLIGENT POWER Ltd. Edyn 96 industry pump [EB/OL]. [2015-04-03]. http:∥www.artemisip.com/sites/default/files/docs/Industrial%20pump%20leaflet%202015-04-03.pdf
[4] MASASHI S, ATSUSHI Y, TOSHIKAZU H, et al. Large capacity hydrostatic transmission with variable displacement [C]∥ Proceedings of the 9th
International Fluid Power Conference. Aachen: RWTH Aachen University, 2014: 424-434.
[5] RYDBER K E. Energy efficient hydraulic hybrid drives[C]∥ Proceedings of the 11th Scandinavian International Conference on Fluid Power.Sweden: Linkping University, 2009: 356-370.
[6] ERIKSSON B. Mobile fluid power systems design with a focus on energy efficiency [D]. Sweden: Linkopings University, 2010.
[7] EHSAN M, RAMPEN M, SALTER S H. Modeling of digitaldisplacement pumpmotors and their application as hydraulic drives for nonuniform loads [J]. Journal of dynamic systems, measurement, and control, 2000,122(5): 210-215.
[8] ROEMER D B, PEDERSEN H C, ANDERSEN T O. Analysis of valve requirements for highefficiency digital displacement fluid power motors[C]∥ The 8th international conference on fluid power transimission and control(ICFP2013). Hangzhou: Zhejiang University Press, 2013: 234-239.
[9] RAMPEN W, CALDWELL N J, STEIN U. Annular valve: US, 7,077,378B2[P]. 20060718.
[10] RAMPEN W, CALDWELL N J, STEIN U. Valve actuator: US, 2011/0253918A1[P]. 20111020.
[11] 丁凡,姚健娣,笪靖,等.高速开关阀的研究现状[J].中国工程机械学报,2011,(03): 351-358.
DING Fan, YAO Jiandi, DA Jing. Advances on highspeed on/off valves [J]. Chinese Journal of Construction Machinery, 2011,(03): 351-358.
[12] ROEMER D B, PEDERSEN H C, ANDERSEN T O. Optimization of geometry of annular seat valves suitable for digital displacement fluid power pumps/motors [C]∥ Proceedings of 2013 IEEE International Conference on Mechatronics and Automation. Takamatsu: [s. n.], 2013: 544-549.
[13] ROEMER D B, PEDERSEN H C, ANDERSEN T O. Topology selection and analysis of actuator for seat valves suitable for use in digital displacement pumps/motors [C]∥ Proceedings of 2013 IEEE International Conference on Mechatronics and Automation. Takamatsu: [s. n.], 2013: 418-424.
[14] WILFONG G,BARDORFF M,LUMKES J. Design and dynamic analysis of high speed on/off poppet valves for digital pump/motors [C]∥ Proceedings of the 6th FPNIPhD Symposium. West Lafayette: Purdue University, 2010: 259-269.
[15] WINKLER B,PLOECKINGER A,SCHEIDL R. A novel piloted fast switching multi poppet valve [J]. International Journal of Fluid Power,2010,11(3): 714.
[16] PLOECKINGER A,WINKLER B,SCHEIDL R. Development and prototyping of a compact,fast 3/2 way switching valve with integrated onboard electronics [C]∥ Proceedings of the 11th Scandinavian International Conference on Fluid Power.Sweden: Linkping University,2009: 236-245.
[17] FALKNER J,PLOECKINGER A,WINKLER B,et al. Feasibility study of a novel sleeve type switching valve [J]. International Journal of Fluid Power, 2011,12(2): 27-35.
[18] TAMMISTO J, HUOVA M, HEIKKILA M, et al. Measured characteristics of an inline pump with independently controlled pistons [C]∥ 7th International Fluid Power Conference. Aachen: RWTH Aachen University, 2010: 156-164.
[19] HOLLAND M. Design of digital pump/motors and experimental validation of operating strategies [D]. USA: Purdue University, 2012.
[20] MAHRENHOLZ J R. Coupled multidomain modeling and simulation of high speed on/off valves [D]. USA: Purdue University, 2009.
[21] DELVES G,LIPPOLIS A. A review analysis of unsteady forces in hydraulic valves [J]. International Journal of Fluid Power,2006,7(3): 29-39.
[22] RAMPEN W H. The digital displacement hydraulic piston pump [D]. the UK: University of Edinburgh, 1993.
[1] 董凯, 赖俊英, 钱晓倩, 詹树林, 阮方. 夏热冬冷地区居住建筑水平式外遮阳节能效果[J]. 浙江大学学报(工学版), 2016, 50(8): 1431-1437.
[2] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[3] 江衍铭, 张建全, 明焱. 集合神经网络的洪水预报[J]. 浙江大学学报(工学版), 2016, 50(8): 1471-1478.
[4] 钟崴, 彭梁, 周永刚, 徐剑, 从飞云. 基于小波包分析和支持向量机的锅炉结渣诊断[J]. 浙江大学学报(工学版), 2016, 50(8): 1499-1506.
[5] 夏玉峰, 任莉, 叶彩红, 王力. 基于RSM的立柱加强板定位布局多目标优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1600-1607.
[6] 李林玉, 吴张华, 余国瑶, 戴巍, 罗二仓. 直线压缩机电声转换特性的实验[J]. 浙江大学学报(工学版), 2016, 50(8): 1529-1536.
[7] 杨章, 童根树, 张磊. 对称布置2根单侧加劲肋的有效刚度[J]. 浙江大学学报(工学版), 2016, 50(8): 1446-1455.
[8] 蒋翔, 童根树, 张磊. 耐火钢-混凝土组合梁抗火性能试验[J]. 浙江大学学报(工学版), 2016, 50(8): 1463-1470.
[9] 单华峰, 夏唐代, 俞峰, 胡军华, 潘金龙. 地下增层开挖托换桩的屈曲稳定临界荷载分析[J]. 浙江大学学报(工学版), 2016, 50(8): 1425-1430.
[10] 曲巍崴, 唐伟, 毕运波, 李少波, 罗水均. 避免强迫装配和提升效率的预连接工艺规划[J]. 浙江大学学报(工学版), 2016, 50(8): 1561-1569.
[11] 杨姝, 刘国平, 亓昌, 王大志. 金属空心球梯度泡沫结构抗冲击特性仿真与优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1593-1599.
[12] 辜天来,张帅,郑耀. 咽式进气道/等直隔离段的反压特性[J]. 浙江大学学报(工学版), 2016, 50(7): 1418-1424.
[13] 程时伟, 陆煜华, 蔡红刚. 移动设备眼动跟踪技术[J]. 浙江大学学报(工学版), 2016, 50(6): 1160-1166.
[14] 郑成志, 高金良, 何文杰. 基于FastICA算法的物理漏损流量分析模型[J]. 浙江大学学报(工学版), 2016, 50(6): 1031-1039.
[15] 黄家辉, 冯冬芹. 广义收益信息物理系统脆弱性评估方法[J]. 浙江大学学报(工学版), 2016, 50(6): 1119-1125.