Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (2): 389-397    DOI: 10.3785/j.issn.1008-973X.2020.02.021
机械与能源工程     
NH3和SO3混合气氛下的灰沉积生长特性
周昊(),白子贤,陈振寰,张佳凯
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Characteristics of ash deposition growth in mixed atmosphere of NH3 and SO3
Hao ZHOU(),Zi-xian BAI,Zhen-huan CHEN,Jia-kai ZHANG
State Key Laboratory of Clean Energy Utilization Institute, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2217 KB)   HTML
摘要:

通过沉降炉系统研究NH3和SO3混合气氛中不同探针表面温度下的灰沉积生长特性. 利用电荷耦合器件(CCD)相机记录灰沉积生长过程,并实时监测探针内外温度,得到灰沉积物厚度变化及探针表面热流密度变化,通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)和能谱仪(EDS)等进一步研究灰沉积物特性. 研究表明,探针表面温度越高,灰沉积物的稳定厚度越小、探针表面的相对热流密度越大. 当探针表面温度为200、230、260 °C时,平均灰沉积厚度分别为2.15、1.82、1.40 mm,平均热流密度相对变化量分别为30.6%、40.3%、41.8%. 灰沉积生长可以分为快速增加、缓慢增加和稳定阶段. XRD检测出硫酸氢铵(ABS),EDS检测出N元素,说明在混合气氛下生成黏性ABS加剧飞灰沉积. SEM结果表明,探针上部灰沉积物多为团聚状,粒径增大;下部灰沉积物多为圆球状,与原飞灰形貌相似. 随着探针表面温度的升高,上部灰沉积物团聚现象减弱,下部灰沉积物变得更为平滑疏松.

关键词: 混合气氛探针表面温度硫酸氢铵(ABS)灰沉积生长热流密度    
Abstract:

The drop tube furnace system was used to study the characteristics of ash deposition growth under different temperatures of probe surface in the mixed atmosphere of NH3 and SO3. The ash deposition process was recorded by the charge coupled device (CCD) camera, and the temperature inside and outside of the probe was monitored in real time to obtain the change of the thickness of ash deposition and the heat flux on the probe surface. And the ash deposition characteristics were further studied by the X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive spectrometer (EDS). Experimental results demonstrate that the stable thickness of the ash deposition decreases and the relative heat flux on the probe surface increases as the surface temperature of the probe increases. When the probe surface temperature was 200, 230 and 260 °C, the average ash deposition thickness was 2.15, 1.82 and 1.40 mm, respectively, and the relative change in average heat flux was 30.6%, 40.3% and 41.8%, respectively. The ash deposition growth can be divided into three stages, the rapid growth stage, the slow growth stage and the stable stage. The ammonium bisulfate (ABS) was detected by XRD, and the N element was detected by EDS, indicating that the generation of viscous ABS in a mixed atmosphere aggravates fly ash deposition. SEM results show that the ash deposition on the upper part of the probe is mostly agglomerated and the particle size increases, and the lower ash deposition is mostly spherical, similar to the fly ash. In addition, the agglomeration of the upper ash deposition is weakened, and the lower ash deposition becomes smoother and looser as the surface temperature of the probe increases.

Key words: mixed atmosphere    probe surface temperature    ammonium bisulfate    ash deposition growth    heat flux
收稿日期: 2019-05-22 出版日期: 2020-03-10
CLC:  TK 11  
基金资助: 国家杰出青年科学基金资助项目(51825605)
作者简介: 周昊(1973—),男,教授,博导,从事低污染高效燃烧技术研究. orcid.org/0000-0001-9779-7703. E-mail: zhouhao@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
周昊
白子贤
陈振寰
张佳凯

引用本文:

周昊,白子贤,陈振寰,张佳凯. NH3和SO3混合气氛下的灰沉积生长特性[J]. 浙江大学学报(工学版), 2020, 54(2): 389-397.

Hao ZHOU,Zi-xian BAI,Zhen-huan CHEN,Jia-kai ZHANG. Characteristics of ash deposition growth in mixed atmosphere of NH3 and SO3. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 389-397.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.02.021        http://www.zjujournals.com/eng/CN/Y2020/V54/I2/389

图 1  管式沉降炉系统示意图
图 2  探针和CCD相机示意图
图 3  SO3制取装置示意图
化合物 wB/% 化合物 wB/%
SiO2 52.640 MgO 1.390
Al2O3 25.570 SO3 1.228
CaO 7.330 TiO2 1.070
Fe2O3 6.690 P2O5 0.468
Na2O 1.640 SrO 0.198
K2O 1.610 BaO 0.166
表 1  原飞灰的XRF分析
θ1/°C θ2/°C qm/
(kg·h?1
v/
(m·s?1
φ(SO3 φ(NH3
200、230、
260
320 ~2.6 ~9.2 ~2 500×
10?6
~100×
10?6
表 2  管式沉降炉积灰生长实验工况设置
图 4  灰沉积厚度计算示意图
图 5  探针热电偶布置示意图
图 6  不同探针表面温度下的灰沉积生长曲线
图 7  200 °C下的灰沉积厚度增长图
图 8  探针内外温度变化曲线
图 9  不同探针表面温度下的热流密度曲线
图 10  不同探针表面温度下的灰沉积物XRD图
图 11  探针上、下表面灰沉积物实物图
图 12  探针上、下表面灰沉积物扫描电镜图
图 13  不同探针表面温度下的灰沉积物EDS分析
1) MUZIO L, BOGSETH S, HIMES R, et al Ammonium bisulfate formation and reduced load SCR operation[J]. Fuel, 2017, 206: 180- 189
doi: 10.1016/j.fuel.2017.05.081
2 ZHOU C Y, ZHANG L N, DENG Y, et al Research progress on ammonium bisulfate formation and control in the process of elective catalytic reduction[J]. Environmental Progress and Sustainable Energy, 2016, 35 (6): 1664- 1672
doi: 10.1002/ep.12409
3 蒋海涛, 蔡兴飞, 付玉玲, 等 燃煤电厂SO3形成、危害及控制技术 [J]. 发电设备, 2013, 27 (5): 366- 368
JIANG Hai-tao, CAI Xing-fei, FU Yu-ling, et al Formation, harms and control technology of SO3 from coal fired power plants [J]. Power Equipment, 2013, 27 (5): 366- 368
doi: 10.3969/j.issn.1671-086X.2013.05.018
4 LONSDALE C R, STEVENS R G, BROCK C A, et al The effect of coal-fired power plant SO2 and NOx control technologies on aerosol nucleation in the source plumes [J]. Atmospheric Chemistry and Physics, 2012, 12 (23): 11519- 11531
doi: 10.5194/acp-12-11519-2012
5 马双忱, 郭蒙, 宋卉卉, 等 选择性催化还原工艺中硫酸氢铵形成机理及影响因素[J]. 热力发电, 2014, 43 (2): 75- 78
MA Shuang-chen, GUO Meng, SONG Hui-hui, et al Formation mechanism and influencing factors of ammonium bisulfate during the selective catalytic reduction process[J]. Thermal Power Generation, 2014, 43 (2): 75- 78
doi: 10.3969/j.issn.1002-3364.2014.02.075
6 马双忱, 邓悦, 吴文龙, 等 SCR脱硝过程中硫酸氢铵形成特性实验研究[J]. 动力工程学报, 2016, 36 (2): 143- 150
MA Shuang-chen, DENG Yue, WU Wen-long, et al Experimental research on ABS formation characteristics in SCR denitrification process[J]. Journal of Chinese Society of Power Engineering, 2016, 36 (2): 143- 150
doi: 10.3969/j.issn.1674-7607.2016.02.010
7 唐昊, 李慧, 杨江毅, 等 NH3-SCR工艺中硫酸铵盐的生成与分解机理研究进展 [J]. 化工进展, 2018, 37 (3): 822- 831
TANG Hao, LI Hui, YANG Jiang-yi, et al Research progress on the formation and decomposition mechanism of ammonium-sulfate salts in NH3-SCR technology [J]. Chemical Industry and Engineering Progress, 2018, 37 (3): 822- 831
8 刘建民, 陈国庆, 黄启龙, 等 燃煤脱硝机组空气预热器蓄热片表面飞灰沉积板结机理研究[J]. 中国电机工程学报, 2016, (Suppl.1): 132- 139
LIU Jian-min, CHEN Guo-qing, HUANG Qi-long, et al Study on mechanism of fly ash deposition and hardening on the air preheater regenerative piece surface of the coal-fired and denitration unit[J]. Proceedings of the CSEE, 2016, (Suppl.1): 132- 139
9 马双忱, 邓悦, 吴文龙, 等 SCR脱硝副产物硫酸氢铵与空预器中飞灰反应特性[J]. 环境工程学报, 2016, (11): 6563- 6570
MA Shuang-chen, DENG Yue, WU Wen-long, et al Reaction characteristic of by-product ammonium bisulfate from SCR denitrification and fly ash in air preheater[J]. Chinese Journal of Environmental Engineering, 2016, (11): 6563- 6570
doi: 10.12030/j.cjee.201507027
10 杨建国, 杨炜樱, 郑方栋, 等 NH3和SO3对硫酸氢铵和硫酸铵生成的影响 [J]. 燃料化学学报, 2018, 46 (1): 92- 98
YANG Jian-guo, YANG Wei-ying, ZHENG Fang-dong, et al Effect of NH3 and SO3 on the formation of ammonium hydrogen sulfate and ammonium sulfate [J]. Journal of Fuel Chemistry and Technology, 2018, 46 (1): 92- 98
doi: 10.3969/j.issn.0253-2409.2018.01.012
11 MENASHA J, DUNN-RANKIN D, MUZIO L, et al Ammonium bisulfate formation temperature in a bench-scale single-channel air preheater[J]. Fuel, 2011, 90 (7): 2445- 2453
doi: 10.1016/j.fuel.2011.03.006
12 蔡永铁. CFB富氧燃烧气氛下飞灰的沉积试验及沉积过程模拟[D]. 哈尔滨: 哈尔滨工业大学, 2014.
CAI Yong-tie. Experimental studies and numerical simulations of fly ash deposition in oxy-fuel CFB [D]. Harbin: Harbin Institute of Technology, 2014.
13 罗闽, 赵伶玲, 李偲宇 空气预热器硫酸氢铵积灰的数值研究[J]. 动力工程学报, 2016, 36 (11): 883- 888
LUO Min, ZHAO Ling-ling, LI Si-yu Numerical study on ash deposition of ammonium hydrogen sulfate in air preheater[J]. Journal of Chinese Society of Power Engineering, 2016, 36 (11): 883- 888
doi: 10.3969/j.issn.1674-7607.2016.11.005
14 ZHENG Z M, WANG H, GUO S, et al Fly ash deposition during oxy-fuel combustion in a bench-scale fluidized-bed combustor[J]. Energy and Fuels, 2013, 27 (8): 4609- 4616
doi: 10.1021/ef400774b
15 LIU Z, LI J B, WANG Q H, et al An experimental investigation into mineral transformation, particle agglomeration and ash deposition during combustion of Zhundong lignite in a laboratory-scale circulating fluidized bed[J]. Fuel, 2019, 243: 458- 468
doi: 10.1016/j.fuel.2019.01.134
16 LI G D, LI S Q, DONG M, et al Comparison of particulate formation and ash deposition under oxy-fuel and conventional pulverized coal combustions[J]. Fuel, 2013, 106: 544- 551
doi: 10.1016/j.fuel.2012.10.035
17 NAMKUNG H, XU L H, LIN K F, et al Relationship between chemical components and coal ash deposition through the DTF experiments using real-time weight measurement system[J]. Fuel Processing Technology, 2017, 158: 206- 217
doi: 10.1016/j.fuproc.2017.01.010
18 ZHOU H, ZHANG J K, ZHANG K Investigation of the deposition characteristics of ammonium bisulfate and fly ash blend using an on-line digital image technique: effect of deposition surface temperature[J]. Fuel Processing Technology, 2018, 179: 359- 368
doi: 10.1016/j.fuproc.2018.07.030
19 ZHOU H, ZHOU B, LI L T, et al Experimental measurement of the effective thermal conductivity of ash deposit for high sodium coal (Zhun Dong coal) in a 300 kW test furnace[J]. Energy and Fuels, 2013, 27 (11): 7008- 7022
doi: 10.1021/ef4012017
20 WANG H F, HARB J N Modeling of ash deposition in large-scale combustion facilities burning pulverized coal[J]. Progress in Energy and Combustion Science, 1997, 23 (3): 267- 282
doi: 10.1016/S0360-1285(97)00010-5
[1] 张佳凯,聂立,岑可法,蒋啸,周昊. 生物质秸秆与神府烟煤掺烧结渣特性的在线监测[J]. 浙江大学学报(工学版), 2020, 54(10): 1955-1963.
[2] 牟林巍, 张宇鸿, 李佳琦, 张嘉懿, 蒋平, 范利武. 表面芯吸性对淬火过程中沸腾传热特性的影响[J]. 浙江大学学报(工学版), 2018, 52(5): 960-965.
[3] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[4] 许佩佩, 刘建忠, 雷琦, 向轶, 周俊虎, 岑可法. 塔式太阳能腔式吸热器热性能的实验研究[J]. 浙江大学学报(工学版), 2014, 48(5): 3-.
[5] 许佩佩, 刘建忠, 雷琦, 向轶, 周俊虎, 岑可法. 塔式太阳能腔式吸热器热性能的实验研究[J]. 浙江大学学报(工学版), 2014, 48(10): 1721-1726.
[6] 郑成航, 程乐鸣, 李涛, 骆仲泱, 倪明江, 岑可法. 多孔介质内低热值气体燃烧及传热数值模拟[J]. J4, 2010, 44(8): 1567-1572.