Experimental research on thermal performance of cavity receiver of solar thermal power tower plant" /> 塔式太阳能腔式吸热器热性能的实验研究
Please wait a minute...
浙江大学学报(工学版)
能源与机械工程     
塔式太阳能腔式吸热器热性能的实验研究
许佩佩, 刘建忠, 雷琦, 向轶, 周俊虎, 岑可法
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Experimental research on thermal performance of cavity receiver of solar thermal power tower plant
XU Pei-pei, LIU Jian-zhong, LEI Qi, XIANG Yi, ZHOU Jun-hu, CEN Ke-fa
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2133 KB)   HTML
摘要:

在自行建立的太阳能腔式吸热器热性能实验台上,研究热流密度、入口工质水体积流量、风速等参数对腔式吸热器热性能的影响.结果表明:太阳能模拟器的热流密度整体上呈高斯分布,吸热管的轴向壁温差可以高达50 ℃;正对太阳能模拟器的#5号吸热管出口水温升最高,可达40 ℃.吸热器的热损失随热流量的增大、入口流量的减小及风速的增大而增大,且热流量因素的影响最大;腔式吸热器具有较高的热效率,正向平衡计算热效率大于85%,且正、反向能量平衡的计算热效率偏差在3%以内.

Abstract:

The influence of some parameters were investigated, such as heat flux density, inlet flow and wind speed on the thermal performance of the cavity receiver on the test-bed constructed by ourselves. Results show that the heat flux density coming from the solar simulator follows Gaussian distribution on the whole. The temperature difference of receiver tube wall along the axial direction can reach to 50 ℃. The outlet water temperature rise of No. 5 receiver tube facing the solar simulator can rise to 40℃. The heat loss of the cavity receiver increases along with the increase of heat flux, the decrease of the inlet flow and the increase of wind speed, and the influence of the heat flux is the largest. The cavity receiver has high thermal efficiency, which can be above 85% through positive balance calculation. The deviation between the positive and reverse balance calculation is within 3%.

出版日期: 2014-10-01
:  TK 224  
通讯作者: 刘建忠,男,教授     E-mail: jzliu@zju.edu.cn
作者简介: 许佩佩(1989—),女,硕士生,从事塔式太阳能热发电吸热器的研究.E-mail: xupp89@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

许佩佩, 刘建忠, 雷琦, 向轶, 周俊虎, 岑可法. 塔式太阳能腔式吸热器热性能的实验研究[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.10.001.

XU Pei-pei, LIU Jian-zhong, LEI Qi, XIANG Yi, ZHOU Jun-hu, CEN Ke-fa.

Experimental research on thermal performance of cavity receiver of solar thermal power tower plant
. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.10.001.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.10.001        http://www.zjujournals.com/eng/CN/Y2014/V48/I10/1721

[1] 张传强,洪慧,金红光. 聚光式太阳能热发电技术发展状况[J]. 热力发电, 2010, 39(12): 59.
ZHANG Chuan-qiang, HONG Hui, JIN Hong-guang. Development situation of power generation technology using heat of light-concentrating solar energy [J].Thermal Power Generation, 2010, 39(12): 59.
[2] 章国芳,朱天宇,王希晨. 塔式太阳能热发电技术进展及在我国的应用前景[J]. 太阳能, 2008, 29 (11): 33-37.
ZHANG Guo-fang, ZHU Tian-yu, WANG Xi-chen. Development of solar power tower technology and its prospect in China [J]. Solar Energy, 2008, 29 (11): 33-37.
[3] 高维,徐蕙,徐二树,等.塔式太阳能热发电吸热器运行安全性研究[J].中国电机工程学报, 2013, 33(2): 92-97.
GAO Wei, XU Hui, XU Er-shu, et al. Research on operation security of solar thermal tower power plant receiver [J]. Proceedings of the CSEE, 2013, 33(2): 92-97.
[4] GONZALEZ M M, PALAFOX H J, CLAUDIO E A. Numerical study of heat transfer by natural convection and surface thermal radiation in an open cavity receiver [J]. Solar Energy, 2012, 86(4): 1118-1128.
[5] GARBRECHT O, SIBAI A F, KNEER R, et al. CFD-simulation of a new receiver design for a molten salt solar power tower [J]. Solar Energy, 2013, 90(1): 94-106.
[6] XU E, YU Q, WANG Z, et al. Modeling and simulation of 1 MW DAHAN solar thermal power tower plant [J]. Renewable Energy, 2011, 36(2): 848-857.
[7] 方嘉宾,魏进家,董训伟,等. 腔式太阳能吸热器热性能的模拟计算[J]. 工程热物理学报, 2009, 30(3): 428-432.
FANG Jia-bin,WEI Jin-jia,DONG Xun-wei,et al. Performance simulation of solar cavity receiver [J]. Journal of Engineering Thermophysics, 2009, 30(3): 428-432.
[8] LU Jian-feng, DING Jing, YANG Jian-ping. Heat transfer performance of an external receiver pipe under unilateral concentrated solar radiation [J]. Solar Energy, 2010, 84(11): 1879-1887.
[9] 杨敏林,杨晓西,丁静,等. 半周加热半周绝热的熔盐吸热管传热特性研究[J]. 太阳能学报, 2009, 30(8): 1007-1012.
YANG Min-lin,YANG Xiao-xi,DING Jing,et al. Heat transfer research on molten salt receiver with semi-circumference heat [J]. Acta Energiae Solaris Sinica, 2009, 30(8): 1007-1012.
[10] 杜景龙,唐大伟,李铁. 5kW聚光型太阳模拟器加热特性的实验研究[J]. 太阳能学报, 2012, 33(4): 625-629.
DU Jing-long,TANG Da-wei,LI Tie. Experiment study of the heating characteristics of 5kW focused solar simulator [J]. Acta Energiae Solaris Sinica, 2012, 33(4): 625-629.
[11] 刘志刚,张春平,赵耀华,等. 一种新型腔式吸热器的设计与实验研究[J]. 太阳能学报, 2005, 26(3): 38-43.
LIU Zhi-gang, ZHANG Chun-ping, ZHAO Yao-hua, et al. The design and experiments of a new cavity absorber [J]. Acta Energiae Solaris Sinica, 2005, 26(3): 38-43.
[12] PRAKASH M, KEDARE S B, NAYAK J K. Investigations on heat losses from a solar cavity receiver [J]. Solar Energy, 2009, 83(2): 157-170.
[13] WU S, XIAO L, CAO Y, et al. Convection heat loss from cavity receiver in parabolic dish solar thermal power system: a review [J]. Solar Energy, 2010, 84(8): 1342-1355.
[14] SIEBERS D L, KRAABEL J S. Estimating convective energy losses from solar central receivers [R]. Livermore: Sandia National Labs, 1984.
[15] LI X, KONG W, WANG Z, et al. Thermal model and thermodynamic performance of molten salt cavity receiver [J]. Renewable Energy, 2010, 35(5): 981-988.
[16] XIAO G, GUO K, LUO Z, et al. Simulation and experimental study on a spiral solid particle solar receiver [J]. Applied Energy, 2014, 113(01): 178-188.
[17] REDDY K S, KUMAR S N. Combined laminar natural convection and surface radiation heat transfer in a modified cavity receiver of solar parabolic dish [J]. International Journal of Thermal Sciences, 2008, 47(12): 1647-1657.
[1] 刘瑞媚, 刘玉坤, 王智化, 刘颖祖, 胡利华,邵哲如, 岑可法. 垃圾焚烧炉排炉二次风配风的CFD优化模拟[J]. 浙江大学学报(工学版), 2017, 51(3): 500-507.
[2] 秦亚男, 杨玉, 时伟, 马炜晨, 周昊, 岑可法. SNCR-SCR耦合脱硝中还原剂均布性的研究[J]. 浙江大学学报(工学版), 2015, 49(7): 1255-1261.
[3] 温智勇,胡敏,杨玉,莫桂源,岑可法. 联合空气分级与SNCR在300 MW锅炉上的应用[J]. J4, 2014, 48(1): 63-69.
[4] 田晨, 王勤辉, 程乐鸣, 骆仲泱, 倪明江. 偏置出口循环流化床内颗粒体积分数分布的测试[J]. J4, 2012, 46(4): 577-583.
[5] 许佩佩, 刘建忠, 雷琦, 向轶, 周俊虎, 岑可法. 塔式太阳能腔式吸热器热性能的实验研究[J]. 浙江大学学报(工学版), 2014, 48(5): 3-.