Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (10): 1955-1963    DOI: 10.3785/j.issn.1008-973X.2020.10.012
能源工程、机械工程     
生物质秸秆与神府烟煤掺烧结渣特性的在线监测
张佳凯1(),聂立2,岑可法1,蒋啸1,周昊1,*()
1. 浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
2. 东方电气集团东方锅炉股份有限公司,四川 成都 611731
Experimental study on slagging characteristics during coal and biomass co-combustion with on-line measurement technique
Jia-kai ZHANG1(),Li NIE2,Ke-fa CEN1,Xiao JIANG1,Hao ZHOU1,*()
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
2. Dongfang Boiler Limited Company, Dongfang Electric Corporation, Chengdu 611731, China
 全文: PDF(1364 KB)   HTML
摘要:

利用自主开发的在线监测系统,在50 kW的下行炉探究2种生物质秸秆与神府烟煤掺烧的结渣特性. 结果表明,随着生物质秸秆的掺烧,灰渣的稳定厚度增加,稳定热流减小. 当掺烧玉米秸秆质量分数为0%、6.7%、15%、22%时,相应的灰渣稳定厚度为1.37、2.51、5.21、5.38 mm,稳定相对热流密度为0.44、0.42、0.37、0.35. 当掺烧花生秸秆质量分数为6.7%、15%、22%时,相应的灰渣稳定厚度为3.37、3.89、5.33 mm,稳定相对热流密度为0.39、0.36、0.30. 利用热力学计算软件Factsage进行化学平衡计算发现,随着秸秆掺烧比例的增加,灰中熔融相的质量分数增加. 用4种结渣指数对生物质掺烧结渣进行预判,碱酸比的预测最准确.

关键词: 灰沉积在线监测热流密度生物质结渣指数    
Abstract:

An online measurement technique was applied to analyze the slagging characteristics during co-combustion of coal and stalk in a 50 kW furnace. Results showed that with the addition of biomass stalk, the stable slag thickness increased and the stable relative heat flux decreased compared with combustion of pure coal. When the mass ratio of corn stalks is 0%, 6.7%, 15%, 22%, the corresponding stable thickness of the slag were 1.37, 2.51, 5.21, 5.38 mm, and the stable relative heat fluxes were 0.44, 0.42, 0.37, 0.35. When the mass proportions of peanut stalks were 6.7%, 15%, and 22%, the corresponding stable thickness of the slag were 3.37, 3.89, and 5.33 mm, and the stable relative heat fluxes were 0.39, 0.36, and 0.30. The liquid slag mass fraction which was obtained by Factsage increased significantly when coal was co-fired with stalk. Base-to-acid ratio showed a good performance in predicting the ash behavior and slagging tendency by using four slagging indexes.

Key words: ash deposition    on-line measurement    heat flux    biomass    slagging indice
收稿日期: 2019-08-16 出版日期: 2020-10-28
CLC:  TK 11  
基金资助: 国家重点研发计划资助项目(2018YFB 0604104)
通讯作者: 周昊     E-mail: zhangjiakai_111@163.com;zhouhao@cmee.zju.edu.cn
作者简介: 张佳凯(1992—),男,博士,从事煤结渣特性的研究. E-mail: zhangjiakai_111@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张佳凯
聂立
岑可法
蒋啸
周昊

引用本文:

张佳凯,聂立,岑可法,蒋啸,周昊. 生物质秸秆与神府烟煤掺烧结渣特性的在线监测[J]. 浙江大学学报(工学版), 2020, 54(10): 1955-1963.

Jia-kai ZHANG,Li NIE,Ke-fa CEN,Xiao JIANG,Hao ZHOU. Experimental study on slagging characteristics during coal and biomass co-combustion with on-line measurement technique. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1955-1963.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.10.012        http://www.zjujournals.com/eng/CN/Y2020/V54/I10/1955

图 1  50 kW下行炉实验装置
图 2  在线监测系统原理示意图
燃料 工业分析1)wB/% 元素分析2)wB/% 低位发热量/
(MJ·kg?1
灰熔点/°C
水分 挥发分 固定碳 灰分 C H N S O DT ST HT FT
神府烟煤 8.77 26.96 48.96 15.32 77.94 4.47 1.42 0.34 15.83 22.57 1234 1257 1275 1302
玉米秸秆 8.47 68.19 16.22 7.12 48.57 5.67 1.09 0.20 44.47 15.23 980 1220 1240 1310
花生秸秆 9.39 64.54 15.67 10.40 48.87 5.80 1.60 0.25 43.48 14.51 1180 1220 1240 1250
表 1  烟煤与生物质秸秆的燃料特性
燃料 灰成分wB/%
Na2O MgO Al2O3 SiO2 P2O5 SO3 K2O CaO TiO2 Fe2O3
注:1)空气干燥基;2)干燥无灰基.
神府烟煤 0.05 1.13 27.95 55.19 0.34 1.06 0.25 6.34 0.78 6.92
玉米秸秆 0.76 2.76 9.22 56.77 1.72 2.57 19.57 6.37 0.27 0.00
花生秸秆 0.79 3.46 12.78 43.13 2.43 4.49 19.84 11.88 0.33 0.85
表 1  
参数 数值
过量空气系数 1.1
炉膛功率/kW 50
燃料量/(kg·h?1 8.0
一次风量/(m3·h?1),风温/°C 12.8,80
二次风量/(m3·h?1),风温/°C 3.5,300
三次风量/(m3·h?1),风温/°C 9.0,272
燃尽风量/(m3·h?1),风温/°C 18.6,292
燃料量/(kg·h?1 8.0
炉内烟气流速/(m·s?1 2.0
炉膛温度/°C 1 200
炉膛出口φ(O2)/% 4
探针内部导热油温度/°C 230
灰沉积时间/min 120
表 2  炉膛操作条件
工况 wB/% 工况 wB/%
工况1 纯烟煤 工况5 花生秸秆:6.7
工况2 玉米秸秆:6.7 工况6 花生秸秆:15
工况3 玉米秸秆:15 工况7 花生秸秆:22
工况4 玉米秸秆:22 ? ?
表 3  煤与生物质掺烧实验工况
图 3  厚度计算原理示意图[20]
图 4  烟煤与不同质量分数的玉米秸秆掺混条件下的灰渣生长曲线
图 5  烟煤与不同质量分数的花生秸秆掺混条件下的灰渣生长曲线
掺烧工况 H/mm q/q0
工况1 1.37 0.44
工况2 2.51 0.42
工况3 5.21 0.37
工况4 5.38 0.35
工况5 3.37 0.39
工况6 3.89 0.36
工况7 5.33 0.30
表 4  煤与生物质掺烧实验结果汇总
图 6  烟煤与不同质量分数的玉米秸秆掺烧条件下的相对热流密度及探针表面温度
图 7  烟煤与不同质量分数的花生秸秆掺烧条件下的相对热流密度及探针表面温度
%
掺烧工况 w(Na) w(Mg) w(Al) w(Si) w(P) w(S) w(K) w(Ca) w(Ti) w(Fe)
工况1 1.34 1.77 13.32 47.26 0.82 4.03 2.09 12.05 1.26 16.06
工况2 1.26 1.20 11.15 51.67 0.35 4.12 3.75 12.94 1.20 12.35
工况3 1.33 1.13 10.37 50.80 0.75 6.62 4.13 13.93 0.74 10.19
工况4 1.33 1.38 10.55 52.55 0.83 4.35 6.04 12.18 0.75 9.67
工况5 0.97 1.27 12.86 50.39 0.70 4.14 3.42 11.60 1.09 13.55
工况6 1.56 1.45 13.53 45.86 0.72 5.29 5.74 10.69 1.29 13.54
工况7 1.69 1.45 14.64 46.25 0.67 4.62 5.57 11.54 0.98 12.58
表 5  灰渣初始层中的元素分布
代码 物质 数据库
436 MgO(SLAG A) FACT FACT-SLAG A
437 FeO(SLAG A) FACT FACT-SLAG A
438 MnO(SLAG A) FACT FACT-SLAG A
439 Na2O(SLAG A) FACT FACT-SLAG A
440 SiO2(SLAG A) FACT FACT-SLAG A
441 TiO2(SLAG A) FACT FACT-SLAG A
442 Ti2O3(SLAG A) FACT FACT-SLAG A
443 CaO(SLAG A) FACT FACT-SLAG A
444 Al2O3(SLAG A) FACT FACT-SLAG A
445 K2O(SLAG A) FACT FACT-SLAG A
表 6  化学平衡计算中所选的结渣系统及成分列表
%
掺烧工况 w(Na2O) w(MgO) w(Al2O3 w(SiO2 w(P2O5 w(SO3 w(K2O) w(CaO) w(TiO2 w(Fe2O3
工况1 0.05 1.13 27.95 55.19 0.34 1.06 0.25 6.34 0.78 6.92
工况2 0.10 1.24 26.69 55.29 0.43 1.16 1.55 6.34 0.75 6.46
工况3 0.16 1.37 25.14 55.42 0.54 1.28 3.15 6.34 0.71 5.88
工况4 0.21 1.49 23.83 55.53 0.64 1.39 4.50 6.35 0.67 5.4
工况5 0.10 1.28 26.93 54.38 0.48 1.29 1.57 6.71 0.75 6.51
工况6 0.16 1.48 25.67 53.38 0.65 1.57 3.19 7.17 0.71 6.01
工况7 0.21 1.64 24.61 52.53 0.80 1.81 4.56 7.56 0.68 5.58
表 7  各个工况下的灰成分
图 8  各个工况下的灰熔融相质量分数
序号 结渣指数 判别界限
轻微 中等 严重
1 硅比 78.8 66.1~78.8 66.1
2 硅铝比 <1.87 1.87~2.65 >2.65
3 碱酸比 <0.2 0.2~0.4 >0.4
4 铁钙比 <0.3或>3 0.3~3(不包含≈1) ≈1
表 8  结渣指数判别界限[24]
工况 硅比 硅铝比 碱酸比 铁钙比
工况1 79.32 1.97 0.18 1.09
工况1 轻微 中等 轻微 严重
工况2 79.76 2.07 0.19 1.02
工况2 轻微 中等 轻微 严重
工况3 80.30 2.20 0.21 0.93
工况3 轻微 中等 中等 严重
工况4 80.76 2.33 0.22 0.85
工况4 轻微 中等 中等 中等
工况5 78.94 2.02 0.20 0.97
工况5 轻微 中等 中等 严重
工况6 78.46 2.08 0.23 0.84
工况6 中等 中等 中等 中等
工况7 78.04 2.13 0.25 0.74
工况7 中等 中等 中等 中等
表 9  结渣指数预判结果
1 ZHOU W, SWANSON L, MOYEDA D, et al Process evaluation of biomass cofiring and reburning in utility boilers[J]. Energy and Fuels, 2010, 24 (8): 4510- 4517
doi: 10.1021/ef1005379
2 宁新宇, 李诗媛, 吕清刚, 等 秸秆类生物质与石煤在流化床中的混烧与黏结机制[J]. 中国电机工程学报, 2008, 28 (29): 105- 110
NING Xin-yu, LI Shi-yuan, LV Qing-gang, et al Study on co-firing and agglomeration mechanism of stalk biomass and stone coal in fluidized bed[J]. Proceedings of the CSEE, 2008, 28 (29): 105- 110
3 BARTOLOME C, GIL A Ash deposition and fouling tendency of two energy crops (cynara and poplar) and a forest residue (pine chips) co-fired with coal in a pulverized fuel pilot plant[J]. Energy and Fuels, 2013, 27 (10): 878- 889
4 陈炜, 段佳, 林鹏, 等 氧量对典型生物质燃烧特性的影响[J]. 中国电机工程学报, 2008, 28 (2): 43- 48
CHEN Wei, DUAN Jia, LIN Peng, et al Effect of oxygen concentration on combustion characteristics of typical biomass material[J]. Proceedings of the CSEE, 2008, 28 (2): 43- 48
5 栾积毅, 孙锐, 路军锋, 等 生物质再燃脱硝的试验研究[J]. 中国电机工程学报, 2008, 28 (14): 73- 79
LUAN Ji-yi, SUN Rui, LU Jun-feng, et al Experimental studies on reburning with biomass for NOx reduction[J]. Proceedings of the CSEE, 2008, 28 (14): 73- 79
6 NIU Y, TAN H, HUI S Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures[J]. Progress in Energy and Combustion Science, 2016, 52: 1- 61
doi: 10.1016/j.pecs.2015.09.003
7 WANG X, TAN H, NIU Y, et al Experimental investigation on biomass co-firing in a 300 MW pulverized coal-fired utility furnace in China[J]. Proceedings of the Combustion Institute, 2011, 33 (2): 2725- 2733
doi: 10.1016/j.proci.2010.06.055
8 VAMVUKA D, MISTAKIDOU E, DRAKONAKI S, et al Ash quality of a beneficiated lignite from Ptolemais Basin, Northern Greece[J]. Energy and Fuels, 2001, 15: 1181- 1185
doi: 10.1021/ef0100193
9 ZHENG Z, WANG H, CAI Y, et al A novel method used to study growth of ash deposition and in situ measurement of effective thermal conductivity of ash deposit[J]. Heat Transfer-Asian Research, 2018, 47: 271- 285
doi: 10.1002/htj.21302
10 WANG Y, TAN H, WANG X, et al The condensation and thermodynamic characteristics of alkali compound vapors on wall during wheat straw combustion[J]. Fuel, 2017, 187: 33- 42
doi: 10.1016/j.fuel.2016.09.014
11 LUAN C, YOU C, ZHANG D Composition and sintering characteristics of ashes from co-firing of coal and biomass in a laboratory-scale drop tube furnace[J]. Energy, 2014, 69: 562- 570
doi: 10.1016/j.energy.2014.03.050
12 ROBINSON A, JUNKER H, BAXTER L Pilot-scale investigation of the influence of coal?biomass cofiring on ash deposition[J]. Energy and Fuels, 2002, 16 (2): 343- 355
doi: 10.1021/ef010128h
13 WANG G, PINTO T, COSTA M Investigation on ash deposit formation during the co-firing of coal with agricultural residues in a large-scale laboratory furnace[J]. Fuel, 2014, 117: 269- 277
doi: 10.1016/j.fuel.2013.09.084
14 KUPKA T, MANCINI M, IRMER M, WEBER R Investigation of ash deposit formation during co-firing of coal with sewage sludge, sawdust and refuse derived fuel[J]. Fuel, 2008, 87 (12): 2824- 2837
doi: 10.1016/j.fuel.2008.01.024
15 MOLCAN P, LU G, BRIS T, et al Characterisation of biomass and coal co-firing on a 3 MWth combustion test facility using flame imaging and gas/ash sampling techniques[J]. Fuel, 2009, 88 (12): 2328- 2334
doi: 10.1016/j.fuel.2009.06.027
16 NIU Y, TAN H, MA L, et al Slagging characteristics on the superheaters of a 12 MW biomass-fired boiler[J]. Energy and Fuels, 2010, 24 (11): 5222- 5227
17 PANG C, HEWAKANDAMBY B, WU T, et al An automated ash fusion test for characterization of the behaviour of ashes from biomass and coal at elevated temperatures[J]. Fuel, 2013, 103: 454- 466
doi: 10.1016/j.fuel.2012.06.120
18 LI Q, ZHANG Y, MENG A, et al Study on ash fusion temperature using original and simulated biomass ashes[J]. Fuel Processing Technology, 2013, 107: 107- 112
doi: 10.1016/j.fuproc.2012.08.012
19 FANG X, JIA L Experimental study on ash fusion characteristics of biomass[J]. Bioresource Technology, 2012, 104: 769- 774
doi: 10.1016/j.biortech.2011.11.055
20 ZHOU H, ZHANG J, ZHANG K Investigation of the deposition characteristics of ammonium bisulfate and fly ash blend using an on-line digital image technique: effect of deposition surface temperature[J]. Fuel Processing Technology, 2018, 179: 359- 368
doi: 10.1016/j.fuproc.2018.07.030
21 YANG X, INGHAM D, MA L, et al Predicting ash deposition behaviour for co-combustion of palm kernel with coal based on CFD modelling of particle impaction and sticking[J]. Fuel, 2016, 165: 41- 49
doi: 10.1016/j.fuel.2015.10.056
22 NIU Y, ZHU Y, TAN H, et al Investigations on biomass slagging in utility boiler: criterion numbers and slagging growth mechanisms[J]. Fuel Processing Technology, 2014, 128: 499- 508
doi: 10.1016/j.fuproc.2014.07.038
23 周斌. 劣质煤积灰结渣的可视化研究及其在富氧条件下的烧结特性研究[D]. 杭州: 浙江大学, 2015.
ZHOU Bin. Visualization research of fouling and slagging for inferior coal and its sintering behavior under oxy-fuel combustion atmosphere [D]. Hangzhou: Zhejiang University, 2015.
24 潘攀. 煤的结渣特性研究[D]. 北京: 华北电力大学, 2007.
PAN Pan. Slagging property research of coal [D]. Beijing: North China Electric Power University, 2007.
[1] 周昊,白子贤,陈振寰,张佳凯. NH3和SO3混合气氛下的灰沉积生长特性[J]. 浙江大学学报(工学版), 2020, 54(2): 389-397.
[2] 周昊,张昆,李亚威,张佳凯. 采用动网格技术的煤粉-玉米秸秆掺烧飞灰沉积数值模拟[J]. 浙江大学学报(工学版), 2019, 53(6): 1139-1147.
[3] 邢江宽,王海鸥,罗坤,白云,樊建人. 预测生物质热解动力学参数的随机森林模型[J]. 浙江大学学报(工学版), 2019, 53(3): 605-612.
[4] 陆燕宁,章洪涛,许岩韦,朱燕群,万凯迪,邵哲如,王智化. 烟气再循环对生物质炉排炉燃烧影响的数值模拟[J]. 浙江大学学报(工学版), 2019, 53(10): 1898-1906.
[5] 牟林巍, 张宇鸿, 李佳琦, 张嘉懿, 蒋平, 范利武. 表面芯吸性对淬火过程中沸腾传热特性的影响[J]. 浙江大学学报(工学版), 2018, 52(5): 960-965.
[6] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[7] 龚彬, 余春江, 王准, 骆仲泱. 生物质炉排锅炉不同受热面沉积特性[J]. 浙江大学学报(工学版), 2015, 49(8): 1578-1584.
[8] 陈超, 周劲松, 项阳阳, 顾珊, 骆仲泱. 生物质高温气流床分级气化特性[J]. 浙江大学学报(工学版), 2015, 49(4): 626-631.
[9] 麻剑, 谢阳, 罗麒元, 许沧粟. 精制生物油和柴油混合燃料的柴油机性能[J]. 浙江大学学报(工学版), 2015, 49(4): 632-637.
[10] 陈冠益,孔韡,徐莹,李婉晴,马隆龙,颜蓓蓓,陈鸿. 生物质化学制氢技术研究进展[J]. 浙江大学学报(工学版), 2014, 48(7): 1318-1328.
[11] 许佩佩, 刘建忠, 雷琦, 向轶, 周俊虎, 岑可法. 塔式太阳能腔式吸热器热性能的实验研究[J]. 浙江大学学报(工学版), 2014, 48(5): 3-.
[12] 余春江,王准,龚彬,骆仲泱. 生物质锅炉钢材在氯化钾接触条件下腐蚀特性[J]. 浙江大学学报(工学版), 2014, 48(11): 2046-2052.
[13] 许佩佩, 刘建忠, 雷琦, 向轶, 周俊虎, 岑可法. 塔式太阳能腔式吸热器热性能的实验研究[J]. 浙江大学学报(工学版), 2014, 48(10): 1721-1726.
[14] 程军,庄良,黄云, 孙晶,周俊虎,岑可法. 平板式微藻光反应器的流场优化及闪光效应[J]. J4, 2013, 47(11): 1958-1963.
[15] 朱颖颖, 王树荣, 葛晓岚, 李信宝, 周劲松, 骆仲泱. 生物质基合成气合成甲醇的热力学模拟研究[J]. J4, 2011, 45(2): 341-347.