Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (6): 1101-1109    DOI: 10.3785/j.issn.1008-973X.2019.06.009
土木与建筑工程     
含非饱和导排层的毛细阻滞覆盖层长期性能分析
焦卫国1(),詹良通2,季永新3,贺明卫1
1. 贵州理工学院 土木工程学院,贵州 贵阳 550003
2. 浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058
3. 贵州中建建筑科研设计院有限公司,贵州 贵阳 550006
Analysis on long-term performance of capillary-barrier cover with unsaturated drainage layer
Wei-guo JIAO1(),Liang-tong ZHANG2,Yong-xin JI3,Ming-wei HE1
1. School of Civil Engineering Guizhou Institute of Technology Guiyang 550003, China
2. MOE Key of Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310027, China
3. Guizhou Construction Science Research and Design Institute of CSCEC Co. Ltd, Guiyang 550006, China
 全文: PDF(1323 KB)   HTML
摘要:

为了验证含非饱和导排层(UDL)毛细阻滞覆盖层的防渗性能,采用模型试验在中国东部湿润气候区自然气候条件下进行2年的长期监测. 覆盖层模型尺寸为2.0 m×1.0 m×0.55 m(长×宽×厚),坡度为18.4°(坡率为1∶3). 结构剖面从上至下依次为植被生长层(15 cm)、粉土层(20 cm)、砂层(10 cm)和碎石层(10 cm). 长期监测试验结果表明:监测期累计降雨量为3 448.4 mm;渗漏量为2.62 mm,显著低于北美湿润气候区土质覆盖层的防渗标准. 非饱和导排砂层(UDL)侧向导排量为581.77 mm,占降雨量的16.87%,导排作用明显. 在一个典型的水文年中,4~11月自然降雨、气温和腾发作用三者高峰期重合;雨热同期的有利气候条件以及UDL层的侧向导排作用,有效控制了渗漏量. 6~9月的连续强降雨为覆盖层易发生渗漏的极端气象段,是防渗设计的控制性气象条件. 冬季12月至次年3月气温低但降雨量较少,增设的非饱和砂层导排作用明显;避免了因腾发作用弱不能及时蒸散水分而发生渗漏的问题. 含非饱和导排层(UDL)的毛细阻滞覆盖层由粉土、砂和碎石等非胀缩性土构成;湿胀干缩和开裂现象不明显.

关键词: 湿润气候区填埋场毛细阻滞覆盖层非饱和导排层侧向导排长期监测防渗性能    
Abstract:

Outdoor model test was carried out for two years in humid area of China in order to study the long-term performance of the capillary-barrier cover with an unsaturated drainage layer (UDL). The size of model was 2.0 m (length) ×1.0 m (width) ×0.55 m (thickness); meanwhile, the slope rate and gradient were 1∶3 and 18.4° , respectively. From top to bottom, the structural profiles were vegetation growth layer (15 cm), silt layer (20 cm), sand layer (10 cm) and gravel layer (10 cm).The monitoring results show that: with the annual rainfall of 3 448.4 mm, the percolation is 2.62 mm, which is in line with the impervious standard of soil cover layer in humid climate zone of North America. Lateral diversion is 581.77 mm, which accounts for 16.87% of the cumulative rainfall and the lateral diversion effect is obvious. From April to November in humid area of China, the three peaks of temperature, rainfall and evapotranspiration coincide every year. The favorable climatic conditions in the same period of rain and heat, and the lateral diversion of UDL, effectively control the percolation. The continuous heavy rainfall from June to September is high risk to percolation meteorological event which is a controlled meteorological condition for seepage prevention design. From December to March of next year with scarce rainfall and weak evapotranspiration, the lateral diversion effect is obvious and avoid to percolation. The capillary barrier cover with unsaturated drainage layer is made up of silt, sand and gravel. Swelling, shrinkage and cracking are not obvious.

Key words: humid area    landfill    capillary barrier cover    unsaturated drainage layer    lateral diversion    long-term monitoring    impermeability
收稿日期: 2018-06-30 出版日期: 2019-05-22
CLC:  TU 47  
作者简介: 焦卫国(1983—),男,副教授,从事非饱和土力学与环境岩土工程研究. orcid.org/0000-0002-7078-5929. E-mail: 805810460@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
焦卫国
詹良通
季永新
贺明卫

引用本文:

焦卫国,詹良通,季永新,贺明卫. 含非饱和导排层的毛细阻滞覆盖层长期性能分析[J]. 浙江大学学报(工学版), 2019, 53(6): 1101-1109.

Wei-guo JIAO,Liang-tong ZHANG,Yong-xin JI,Ming-wei HE. Analysis on long-term performance of capillary-barrier cover with unsaturated drainage layer. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1101-1109.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.06.009        http://www.zjujournals.com/eng/CN/Y2019/V53/I6/1101

图 1  含非饱和导排层的毛细阻滞覆盖层中水分运移图
图 2  长期性能监测试验模型
图 3  覆盖层模型尺寸和仪器布置图
图 4  碎石、砂和粉土的粒径曲线
图 5  覆盖层土体土水特征曲线
图 6  2011年杭州市降雨量和潜在蒸发量
图 7  2011年杭州覆盖层植被生长参数
图 8  覆盖层水量分配随时间变化关系
图 9  监测期内覆盖层水量分配
水量名称 绝对值/mm r/% 水量名称 绝对值/mm r/%
W 3 448.40 100.00 L 581.77 16.87
E 2 038.30 59.11 Pr 2.62 0.80
R 836.34 24.25 ? ? ?
表 1  监测期内实测覆盖层水量分配比率
时间 W/mm E/mm R/mm L/mm Pr/mm
2010.06~2010.11 951.53 713.15 241.24 40.05 0.39
雨季 (100% 74.95% 25.35% 4.21% 0.04%)
2010.12~2011.03 197.10 166.02 13.00 20.35 0
旱季 (100% 84.23% 6.60% 10.32% 0)
2011.04~2011.11 1 188.12 627.03 316.37 251.24 1.13
雨季 (100% 52.78% 26.63% 21.15% 0.10%)
2011.12~2012.03 538.68 211.29 110.63 198.63 0
旱季 (100% 39.23% 20.54% 36.87% 0)
2012.04~2012.06 572.97 320.81 155.10 71.50 1.1
雨季 (100% 56.00% 27.07% 12.48% 0.20%)
雨季累计 2 712.62 1 660.99 712.71 362.79 2.62
(100% 61.23% 26.27% 13.37% 0.10%)
旱季累计 735.78 377.31 123.63 218.98 0
(100% 51.28% 16.80% 29.76% 0)
表 2  监测期内雨季、旱季覆盖层各水量分配和比率
图 10  监测期内覆盖层适时总储水量变化
图 11  2011年6~9月覆盖层粉土不同深度基质吸力
图 12  2011年6月1~20日极端气象条件下覆盖层水量分配
水量名称 绝对值/mm r/% 水量名称 绝对值/mm r/%
W 450.30 100.00 E 90.57 20.11
L 163.50 36.31 ΔS 51.00 11.33
R 144.28 32.04 Pr 0.95 0.21
表 3  2011年6月1~14日极端气象条件下覆盖层各水量分配及比率
图 13  2011年杭州强降雪条件覆盖层植被生长情况
图 14  2011年杭州强降雪事件中覆盖层粉土结构
1 焦卫国, 詹良通, 孔令刚, 等 黄土-碎石覆盖层毛细阻滞效应及设计厚度分析[J]. 浙江大学学报: 工学版, 2016, 50 (11): 2128- 2134
JIAO Wei-guo, ZHAN Liang-tong, LAN Ji-wu, et al Verification of capillary barrier effect of clayey loess-gravel cover and analysis of design thickness[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (11): 2128- 2134
2 张文杰, 林午, 董林兵 垃圾填埋场毛细阻滞型腾发封顶模型试验[J]. 岩土力学, 2014, 35 (5): 1263- 1268
ZHANG Wen-jie, LIN Wu, DONG Lin-bing Model test of a capillary barrier evapotranspiration cover for landfills[J]. Rock and Soil Mechanics, 2014, 35 (5): 1263- 1268
3 张文杰, 邱战洪, 朱成仁, 等 长三角地区填埋场ET封顶系统的性能评价[J]. 岩土工程学报, 2009, 31 (3): 384- 389
ZHANG Wen-jie, QIU Zhan-hong, ZHU Cheng-ren, et al Evaluation of evapotranspiration covers of landfills in Yangtze river delta region[J]. Chinese Journal of Geotechnical Engineering, 2009, 31 (3): 384- 389
doi: 10.3321/j.issn:1000-4548.2009.03.013
4 MORRIS C E, STORMONT J C Evaluation of numerical simulations of capillary barrier field tests[J]. Geotechnical and Geological Engineering, 1998, 16 (3): 201- 2013
doi: 10.1023/A:1008853710339
5 MORRIS C E, STORMONT J C Parametric study of unsaturated drainage layers in capillary barrier[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125 (12): 1057- 1065
doi: 10.1061/(ASCE)1090-0241(1999)125:12(1057)
6 KHIRE M V, BENSON C H Field data from a capillary barrier and model predictions with UNSAT-H[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125 (6): 518- 527
doi: 10.1061/(ASCE)1090-0241(1999)125:6(518)
7 SCHNABEL W, LEE W, BARNES D L. A numerical simulation of evapotranspiration landfill cover performance at three cold-region locations [C] // Impacts of Global Climate Change. Anchorage: [s. n], 2005: 1–8.
8 BENSON C H, ALBRIGHT W H, ROESLER A C, et al. Evaluation of final cover performance: field data from the Alternative Cover Assessment Program (ACAP) [C] // Waste Management. Tucson: [s. n], 2002, 2: 1–15.
9 STORMONT J C, MORRIS C E Method to estimate water storage capacity of capillary barriers[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124 (6): 297- 303
10 STORMONT J C Unsaturated drainage layers for diversion of infiltrating water[J]. Journal of Irrigation and Drainage Engineering, 1997, 123: 364- 366
doi: 10.1061/(ASCE)0733-9437(1997)123:5(364)
11 赵慧, 刘川顺, 王伟, 等 垃圾填埋场腾发覆盖系统控制渗滤效果的研究[J]. 中国给水排水, 2008, 24 (9): 86- 89
ZHAO Hui, LIU Chuan-shun, WANG Wei, et al Study of leachate control effect of evapotranspiration landfill cover system[J]. China Water and Wastewater, 2008, 24 (9): 86- 89
doi: 10.3321/j.issn:1000-4602.2008.09.022
12 NG C W W, WOONA K X, LEUNGA A K, et al Experimental investigation of induced suction distribution in a grass covered soil[J]. Ecological Engineering, 2013, 52: 219- 223
doi: 10.1016/j.ecoleng.2012.11.013
13 张文杰, 耿潇 垃圾填埋场毛细阻滞型腾发封顶工作机理及性能分析[J]. 岩土工程学报, 2016, 38 (3): 454- 459
ZHANG Wen-jie, GENG Xiao Performance and mechanism of capillary-barrier evaportranspiration cover of landfills[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (3): 454- 459
14 詹良通, 焦卫国, 孔令刚, 等 黄土作为西北地区填埋场土质覆盖层材料可行性及设计厚度分析[J]. 岩土力学报, 2014, 35 (12): 3361- 3369
ZHAN Liang-tong, JIAO Wei-guo, KONG Ling-gang, et al Feasibility analysis of using loess as soil cover material for landfills in the northwest of China[J]. Rock and Soil Mechanics, 2014, 35 (12): 3361- 3369
15 邓林恒, 詹良通, 陈云敏, 等 含非饱和导排层的毛细阻滞型覆盖层性能模型试验研究[J]. 岩土工程学报, 2012, 34 (1): 75- 80
DENG Lin-heng, ZHAN Liang-tong, CHEN Yun-min, et al Model tests on capillary-barrier cover with unsaturated drainage layer[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (1): 75- 80
[1] 王亮,谢海建,吴家葳,陈云敏,丁昊. 填埋场成层衬垫污染物运移参数等效模型[J]. 浙江大学学报(工学版), 2021, 55(3): 519-529.
[2] 余松霖,柯瀚,詹良通,孟涛,陈云敏,杨策. 工程渣土的工程特性及矿坑填埋场的工后沉降和容量分析[J]. 浙江大学学报(工学版), 2020, 54(12): 2364-2376.
[3] 彭赵, 兰吉武, 詹良通, 何海杰, 扶焱明, 郑学娟. 塘渣反压在垃圾填埋场局部滑移治理中的应用[J]. 浙江大学学报(工学版), 2018, 52(4): 710-718.
[4] 柯瀚, 董鼎, 陈云敏, 郭城, 冯世进. 考虑剪缩性的城市固体废弃物非线性弹性模型[J]. 浙江大学学报(工学版), 2017, 51(11): 2158-2164.
[5] 詹良通, 龚标, 兰吉武, 王誉泽, 陈云敏. 黄土中渗滤液的迁移勘察与数值分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1196-1202.
[6] 刘海龙, 周家伟, 陈云敏, 李育超, 詹良通. 城市生活垃圾填埋场稳定化评估[J]. 浙江大学学报(工学版), 2016, 50(12): 2336-2342.
[7] 焦卫国, 詹良通, 兰吉武,陈云敏. 黄土-碎石覆盖层毛细阻滞效应及设计厚度分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2128-2134.
[8] 万晓丽, 李育超, 柯瀚, 陈云敏, 梅甫良, 应丰. 时域条件下填埋场导排系统水位变化规律[J]. J4, 2011, 45(4): 688-694.
[9] 高登 朱斌 陈云敏 林伟岸. 竖向扩建垃圾填埋场中间衬垫系统的应变分析[J]. , 2009, 43(4): 760-765.
[10] 谢海建 唐晓武 陈云敏 柯瀚. 原始土层影响下成层介质污染物一维扩散模型[J]. J4, 2006, 40(12): 2191-2195.
[11] 柯瀚 陈云敏 冯世进. 考虑生物降解的填埋场封场后沉降分析模型[J]. J4, 2005, 39(8): 1212-1216.