Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (4): 710-718    DOI: 10.3785/j.issn.1008-973X.2018.04.014
土木工程     
塘渣反压在垃圾填埋场局部滑移治理中的应用
彭赵1,2, 兰吉武1,2, 詹良通1,2, 何海杰1,2, 扶焱明3, 郑学娟3
1. 浙江大学 岩土工程研究所, 浙江 杭州 310058;
2. 浙江大学 软弱土与环境土工教育部重点实验室, 浙江 杭州 310058;
3. 杭州市环境集团有限公司, 浙江 杭州 310022
Application of loading berm in landfill partial slip control
PENG Zhao1,2, LAN Ji-wu1,2, ZHAN Liang-tong1,2, HE Hai-jie1,2, FU Yan-ming3, ZHENG Xue-juan3
1. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China;
2. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China;
3. Hangzhou Environmental Group Limited Company, Hangzhou 310022, China
 全文: PDF(3206 KB)   HTML
摘要:

对国内处于填埋作业状态的某局部滑移堆体边坡开展塘渣反压控制工程实践,监测治理前、后的表面位移、深层水平位移和渗沥液水位,评估滑移治理效果.分析后续填埋作业塘渣反压高度和厚度要求.结果表明:采用塘渣反压后,表面位移速率最大值从130 mm/d降为20 mm/d,填埋堆体单次最大滑移面积从8 994 m2降为1 645 m2,深层最大滑移速率从5.3 mm/d降为0.9 mm/d.分析表明,在实施塘渣反压措施后,堆体现状局部稳定安全系数从1.129提高到1.614.当后续堆体继续堆高时,建议最小反压体高度应高于潜在滑移面的坡脚,最小反压体厚度应保证堆体稳定安全,反压体高度和厚度的最终取值应根据堆体的稳定性和反压工程的经济性进行优化.

Abstract:

The loading berm method was used to control the partial stability of a domestic landfill in a state of work. The surface horizontal displacement, deep lateral displacement and leachate level before and after the treatment were monitored in order to evaluate the effect of the method. The height and thickness of loading berm for subsequent landfill operation was analyzed. The maximum surface slip rate reduced from 130 mm/d to 20 mm/d, the maximum single slip area reduced from 8 994 m2 to 1 645 m2, and the maximum deep slip rate reduced from 5.3 mm/d to 0.9 mm/d. The safety factor of the slope increased from 1.129 to 1.614. When the subsequent height of this waste slope continued to increase, the loading berm should be higher than the toe of potential sliding slope, and the minimum thickness of loading berm is enough to ensure safety. The ultimate height and thickness of loading berm are supposed to optimize according to the safety and economy.

收稿日期: 2017-01-06
CLC:  TK79  
基金资助:

国家自然科学基金青年基金资助项目(41502276);浙江省科技计划资助项目(2015C03021).

通讯作者: 兰吉武,男,副研究员,博士.orcid.org/0000-0001-6207-8565.     E-mail: lanjiwu@zju.edu.cn
作者简介: 彭赵(1992-),男,硕士生,从事环境土工的研究.orcid.org/0000-0002-4920-0025,E-mail:peng_zhao@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

彭赵, 兰吉武, 詹良通, 何海杰, 扶焱明, 郑学娟. 塘渣反压在垃圾填埋场局部滑移治理中的应用[J]. 浙江大学学报(工学版), 2018, 52(4): 710-718.

PENG Zhao, LAN Ji-wu, ZHAN Liang-tong, HE Hai-jie, FU Yan-ming, ZHENG Xue-juan. Application of loading berm in landfill partial slip control. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(4): 710-718.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.04.014        http://www.zjujournals.com/eng/CN/Y2018/V52/I4/710

[1] 陈云敏. 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36(1):1-46. CHEN Yun-min. A fundamental theory of environmentalgeo-technics and its application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1):1-46.
[2] LING H I, LESHCHINSKY D, MOHRI Y, et al. Estimation of municipal solid waste landfill settlement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(1):21-28.
[3] 刘松玉, 詹良通, 胡黎明, 等. 环境岩土工程研究进展[J]. 土木工程学报, 2016, 49(3):6-30. LIU Song-yu, ZHAN Liang-tong, HU Li-ming, et al. Research progress of environmental geotechnical engineering[J]. China Civil Engineering Journal, 2016, 49(3):6-30.
[4] 兰吉武. 填埋场渗滤液产生, 运移及水位雍高机理和控制[D]. 杭州:浙江大学, 2012. LAN Ji-wu. Mechanism of leachate generation, transport and mound in MSW landfills and control of leachate level[D]. Hangzhou:Zhejiang University, 2012.
[5] 陈云敏, 兰吉武, 李育超, 等. 垃圾填埋场渗沥液水位壅高及工程控制[J]. 岩石力学与工程学报, 2014(01):154-163. CHEN Yun-min, LAN Ji-wu, LI Yu-chao, et al. Development and contral of leachate mound in MSW landfills[J]. Chinese Journal of Rock Mechanics and Engineering, 2014(01):154-163.
[6] MERRY S M, JR E K, FRITZ W U. Reconnaissance of the July 10, 2000, Payatas landfill failure[J]. Journal of Performance of Constructed Facilities, 2005, 19(2):100-107.
[7] HENDRON D M, FERNANDEZ G, PROMMER P J, et al. Investigation of the cause of the 27 September 1997 slope failure at the Dona Juana landfill[C]//Proceedings of the 7th International Waste Management and Landfill Symposium. Cagliari:[s. n.], 1999:545-554.
[8] PENG R, HOU Y, ZHAN L, et al. Back-analyses of landfill instability induced by high water level:case study of Shenzhen landfill[J]. International Journal of Environmental Research and Public Health, 2016, 13(1):126-138.
[9] 管仁秋. 城市固体废弃物填埋场边坡稳定分析及工程控制措施[D]. 杭州:浙江大学, 2010. GUAN Ren-qiu. Stability analysis and control measures of municipal solid waste slope[D]. Hangzhou:Zhejiang University, 2010.
[10] 詹良通, 管仁秋, 陈云敏, 等. 某填埋场垃圾堆体边坡失稳过程监测与反分析[J]. 岩石力学与工程学报, 2010, 29(8):1697-1705. ZHAN Liang-tong, GUAN Ren-qiu, CHEN Yun-min, et al. Monitoring and back analyses of slope failure process at a landfill[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8):1697-1705.
[11] 徐辉. 高厨余垃圾生化-水力-力学相互作用大型模型试验及应用[D]. 杭州:浙江大学, 2016. XU Hui. Large-scale experiment on biochemo-hydro-mechanical behaviors of high-food-waste-conetnt MSW and applications[D]. Hangzhou:Zhejiang University, 2016.
[12] 顾高莉. 填埋场导排层淤堵实验研究及淤堵条件下最高水位计算[D]. 杭州:浙江大学,2011. GU Gao-li. Laboratory research of clogging of landfill and analysis of maximum liquid depth in landfill drainage layers under clogging conditions[D]. Hangzhou:Zhejiang University, 2011.
[13] 朱梅生. 软土地区路堤合理断面之选择[J]. 土木工程学报, 1964, 11(2):48-60. ZHU Mei-sheng. Selection of reasonable cross-section of embankment in soft soil region[J].China Civil Engineering Journal, 1964, 11(2):48-60.
[14] 陈金锋, 宋二祥. 西南山区机场高填方边坡反压护道优化设计[J]. 工程力学, 2012, 29(6):85-91. CHEN Jin-feng. SONG Er-xiang. Optimized design of loading berm for high fill slope of airport in mountainous area of southwest China[J]. Engineering Mechanics, 2012, 29(6):85-91.
[15] DE S M, GHARABAGHI B, CLEMMER R, et al. Berm design to reduce risks of catastrophic slope failures at solid waste disposal sites[J]. Waste Management and Research the Journal of the International Solid Wastes and Public Cleansing Association Iswa, 2016, 34(11):1117-1125.
[16] 陈富强,杨光华,刘惠康,等.抛石反压法在某软土填方边坡中的成功应用[J].岩土工程学报,2013,35(增2):749-752. CHEN Fu-qiang,YANG Guang-hua,LIU Hui-kang,et al. Application of riprap back pressure method in a soft soil slope[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(supple.2):749-752.
[17] 金亚兵, 周志雄. 挡土墙(桩)前堆载反压或预留土体分析与计算[J]. 岩土力学, 1999, 20(3):56-60. JIN Ya-bing, ZHOU Zhi-xiong. Analysis and calculation method of surcharge reaction and remaining soils near retaining wall[J]. Rock and Soil Mechanics, 1999, 20(3):56-60.
[18] 周志林.西攀高速公路边坡工程若干问题的探讨[D]. 成都:西南交通大学, 2005. ZHOU Zhi-lin. Discussing some problem of the slope engineering on the Xi Pan highway[D]. Chengdu:Southwest Jiaotong University,2005.
[19] 何海杰, 兰吉武, 陈云敏, 等. 西北地区某填埋场堆体滑移过程监测与分析. 岩土工程学报, 2015, 37(9):1721-1726. HE Hai-jie, LAN Ji-wu, CHEN Yun-min, et al. Monitoring and analysis of slope slip process at a landfill in Northwest China[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9):1721-1726.
[20] CJJ 176-2012, 生活垃圾卫生填埋场岩土工程技术规范[S]. 北京:中华人民共和国住房和城乡建设部,2012.
[21] 詹良通, 罗小勇, 陈云敏, 等. 垃圾填埋场边坡稳定安全监测指标及警戒值[J]. 岩土工程学报, 2012,34(7):1305-1312. ZHAN Liang-tong, LUO Xiao-yong, CHEN Yun-min, et al. Field monitoring items and warning values for slope safety of MSW landfills[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7):1305-1312.

[1] 边佩翔, 杨志宏, 王勇, 马鹏磊, 王诗雅. Savonius式水轮机水动力学性能[J]. 浙江大学学报(工学版), 2018, 52(2): 268-272.