Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (12): 2298-2308    DOI: 10.3785/j.issn.1008-973X.2019.12.006
土木工程、水利工程     
电势条件对混凝土结构电化学修复数值模拟的影响
夏晋1(),金世杰2,何晓宇3,徐小梅3,金伟良1
1. 浙江大学 结构工程研究所,浙江 杭州 310058
2. 浙江大学建筑设计研究院有限公司,浙江 杭州 310007
3. 浙江省交通规划设计研究院有限公司水运及海洋工程技术研究中心,浙江 杭州,310013
Effect of electric potential condition on numerical simulation of electrochemical rehabilitation for concrete structures
Jin XIA1(),Shi-jie JIN2,Xiao-yu HE3,Xiao-mei XU3,Wei-liang JIN1
1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China
2. The Architectural Design and Research institute of Zhejiang University Co. Ltd, Hangzhou 310007, China
3. Research Center for Water Transport and Marine Engineering Technology, Zhejiang Provincial Institute of Communications Planning, Design and Research Co. Ltd, Hangzhou 310013, China
 全文: PDF(1602 KB)   HTML
摘要:

通过试验研究和理论分析,对比3类电势条件(常电势条件、电中性条件和高斯定理)对混凝土结构电化学修复过程数值模拟结果的影响. 利用物质守恒定律、Nernst-Planck方程和电势条件构建电化学修复过程的数值模型,通过数值模型比较电化学修复过程电势、氯离子浓度、净电荷数和电流密度等参数在混凝土内部的分布. 结果表明,在常电势条件下,除氯前端的氯离子浓度梯度较大;当采用电中性条件与高斯定理时,模拟氯离子浓度分布和电势分布结果较为相似,混凝土分别在辅助阳极与阴极钢筋区域形成电迁移加速作用区与抑制作用区. 试验研究电化学除氯过程的氯离子浓度分布. 试验结果与数值模拟结果的对比表明,采用电中性条件或高斯定理模拟氯离子浓度分布更接近试验测试结果,适用于钢筋混凝土结构电化学修复的仿真分析.

关键词: 混凝土结构电化学修复数值模拟电势条件常电势条件电中性条件高斯定理    
Abstract:

Three kinds of electric potential conditions, including constant potential condition, electro-neutrality condition and Gauss’s law, were employed to study their influence on the numerical simulation of the electrochemical rehabilitation for concrete structures. A numerical model was established based on mass conservation, Nernst-Planck and electric potential condition equations. The electric potential, chloride concentration, net charge and current density distributions in the concrete during the electrochemical rehabilitation were compared by numerical models. Results show that the chloride concentration gradient at the chloride wave front was moderately large for the constant potential condition model. Meanwhile, the modelling results of the chloride ion concentration and potential distributions from the electro-neutrality condition and the Gauss’s law models were similar. The acceleration area and the restricted area of the migration occur at the auxiliary anode and cathodic steel bars, respectively. The chloride ion concentration distribution was also experimentally obtained. The comparison of experiment results and numerically modelling results indicates that, the chloride ion concentration distribution of the electro-neutrality condition and the Gauss’s law models are more approximate to the experimental results. Therefore, the electro-neutrality condition and the Gauss’s law models are applicable for the simulation analysis of electrochemical rehabilitation for concrete structures.

Key words: concrete structure    electrochemical rehabilitation    numerical simulation    electric potential condition    constant potential condition    electro-neutrality condition    Gauss’s law
收稿日期: 2018-10-22 出版日期: 2019-12-17
CLC:  TU 528.0  
基金资助: 国家重点研发计划专项资助项目(2017YFC0806100);国家自然科学基金资助项目(51778566);浙江省自然科学基金重点资助项目(LZ16E080002);浙江省交通运输厅科研计划资助项目(2018016)
作者简介: 夏晋(1982—),男,副教授,从事混凝土结构耐久性研究. orcid.org/0000-0002-5569-5650. E-mail: xiajin@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
夏晋
金世杰
何晓宇
徐小梅
金伟良

引用本文:

夏晋,金世杰,何晓宇,徐小梅,金伟良. 电势条件对混凝土结构电化学修复数值模拟的影响[J]. 浙江大学学报(工学版), 2019, 53(12): 2298-2308.

Jin XIA,Shi-jie JIN,Xiao-yu HE,Xiao-mei XU,Wei-liang JIN. Effect of electric potential condition on numerical simulation of electrochemical rehabilitation for concrete structures. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2298-2308.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.12.006        http://www.zjujournals.com/eng/CN/Y2019/V53/I12/2298

离子 ci /(mol·m?3 ${c_{i,0}}$ /(mol·m?3 Di /(10?12 m2·s?1 zi
Cl? 0 77.40 4.00 ?1
OH? 4.48 4.48 10.36 ?1
Na+ 0 77.40 3.84 1
Ca2+ 2.24 2.24 0.64 2
表 1  电化学除氯模型对比采用的边界条件、初始条件及其他模型参数
图 1  常电势条件下电化学除氯的一维模拟结果
图 2  电中性条件和高斯定理模型中电化学除氯的一维模拟结果对比
图 3  不同电势条件下模拟混凝土内的净电荷数分布
图 4  不同电势条件模拟电势的拉普拉斯算子
图 5  电化学除氯实验的混凝土试件尺寸示意图
m/(kg·m?3) r/%1)
水泥 石子
 注:1) r 为混泥土中氯化钠与水泥的质量百分比
220 509 562 1 044 3
表 2  电化学除氯试件混凝土配合比
图 6  电化学除氯系统示意图
图 7  氯离子浓度检测取样方法示意图
离子 ci /(mol·m?3 ${c_{{{i}},0}}$ /(mol·m?3 Di /(10?12 m2·s?1 zi
Cl? 0 77.40 9.00 ?1
OH? 4.48 4.48 23.30 ?1
Na+ 0 77.40 8.64 1
Ca2+ 2.24 2.24 1.44 2
表 3  电化学除氯数值模拟的边界条件、初始条件及其他模型参数
图 8  电化学除氯的一维模拟结果与试验结果对比
图 9  电化学除氯二维模拟结果与试验结果对比
1 金伟良, 赵羽习. 混凝土结构耐久性: 第2版[M]. 北京: 科学出版社, 2014.
2 郭育霞, 贡金鑫, 尤志国 电化学除氯后混凝土性能试验研究[J]. 大连理工大学学报, 2008, 48 (6): 863- 868
GUO Yu-xia, GONG Jin-xin, YOU Zhi-guo Experimental study of characteristics of concrete experienced electrochemical extraction of chlorides[J]. Journal of Dalian University of Technology, 2008, 48 (6): 863- 868
doi: 10.7511/dllgxb200806015
3 蒋正武, 杨凯飞, 潘微旺 碳化混凝土电化学再碱化效果研究[J]. 建筑材料学报, 2012, 15 (1): 17- 21
JIANG Zheng-wu, YANG Kai-fei, PAN Wei-wang Study on effectiveness of electrochemical realkalization for carbonated concrete[J]. Journal of Building Materials, 2012, 15 (1): 17- 21
doi: 10.3969/j.issn.1007-9629.2012.01.004
4 孙文博, 高小建, 杨英姿, 等 电化学除氯处理后的混凝土微观结构研究[J]. 哈尔滨工程大学学报, 2009, 30 (10): 1108- 1112
SUN Wen-bo, GAO Xiao-jian, YANG Ying-zi, et al Microstructure of concrete after electrochemical chloride extraction treatment[J]. Journal of Harbin Engineering University, 2009, 30 (10): 1108- 1112
5 屈文俊, 熊焱, 郭莉 碳化混凝土再碱化影响因素及其耐久性研究[J]. 建筑材料学报, 2008, 11 (1): 21- 27
QU Wen-jun, XIONG Yan, GUO Li Influence factor of realkalization technique for carbonated concrete and study of its durability[J]. Journal of Building Materials, 2008, 11 (1): 21- 27
doi: 10.3969/j.issn.1007-9629.2008.01.004
6 FENG G, LI L, KIM B, et al Multiphase modelling of ionic transport in cementitious materials with surface charges[J]. Computational Materials Science, 2016, 111: 339- 349
doi: 10.1016/j.commatsci.2015.09.060
7 LI L Y, PAGE C L Finite element modelling of chloride removal from concrete by an electrochemical method[J]. Corrosion Science, 2000, 42 (12): 2145- 2165
doi: 10.1016/S0010-938X(00)00044-5
8 SAMSON E, MARCHAND J Numerical solution of the extended nernst-planck model[J]. Journal of Colloid and Interface Science, 1999, 215 (1): 1- 8
doi: 10.1006/jcis.1999.6145
9 BANFILL P F G. Features of the mechanism of electrolytic re-alkalization and desalination treatments for reinforced concrete [C] // Corrosion and Corrosion Protection of Steel in Concrete: Proceedings of International Conference. Sheffield: [s. n.], 1994: 1489−1498.
10 ANDRADE C, DIEZ J M, ALAMáN A, et al Mathematical modelling of electrochemical chloride extraction from concrete[J]. Cement and Concrete Research, 1995, 25 (4): 727- 740
doi: 10.1016/0008-8846(95)00063-I
11 LI L, EASTERBROOK D, XIA J, et al Numerical simulation of chloride penetration in concrete in rapid chloride migration tests[J]. Cement and Concrete Composites, 2015, 63: 113- 121
doi: 10.1016/j.cemconcomp.2015.09.004
12 胡少伟, 朱雅仙, 游日, 等 外加电场作用下氯离子在钢筋混凝土结构中的扩散模拟[J]. 水运工程, 2010, (8): 7- 11
HU Shao-wei, ZHU Ya-xian, YOU Ri, et al Diffusion simulation analysis of chloride ion penetration in reinforced concrete structure under external electric field[J]. Port and Waterway Engineering, 2010, (8): 7- 11
doi: 10.3969/j.issn.1002-4972.2010.08.002
13 WANG Y, LI L Y, PAGE C L A two-dimensional model of electrochemical chloride removal from concrete[J]. Computational Materials Science, 2001, 20 (2): 196- 212
doi: 10.1016/S0927-0256(00)00177-4
14 KUBO J, SAWADA S, PAGE C L, et al Electrochemical injection of organic corrosion inhibitors into carbonated cementitious materials: part 2. mathematical modelling[J]. Corrosion Science, 2007, 49 (3): 1205- 1227
doi: 10.1016/j.corsci.2006.06.015
15 TOUMI A, FRAN?OIS R, ALVARADO O Experimental and numerical study of electrochemical chloride removal from brick and concrete specimens[J]. Cement and Concrete Research, 2007, 37 (1): 54- 62
doi: 10.1016/j.cemconres.2006.09.012
16 FRIZON F, LORENTE S, OLLIVIER J P, et al Transport model for the nuclear decontamination of cementitious materials[J]. Computational Materials Science, 2003, 27 (4): 507- 516
doi: 10.1016/S0927-0256(03)00051-X
17 LIU Q, XIA J, EASTERBROOK D, et al Three-phase modelling of electrochemical chloride removal from corroded steel-reinforced concrete[J]. Construction and Building Materials, 2014, 70: 410- 427
doi: 10.1016/j.conbuildmat.2014.08.003
18 CONTI F, EISENMAN G The non-steady-state membrane potential of ion exchangers with fixed sites[J]. Biophysical Journal, 1965, 5 (2): 247
doi: 10.1016/S0006-3495(65)86714-5
19 祝频, 王新祥, 韦江雄, 等 电化学除盐模型及离子迁移过程的数值分析[J]. 武汉理工大学学报, 2011, 33 (5): 41- 47
ZHU Pin, WANG Xin-xiang, WEI Jiang-xiong, et al Model and numerical analysis of ions migration in concrete during the process of electrochemical chloride extraction[J]. Journal of Wuhan University of Technology, 2011, 33 (5): 41- 47
doi: 10.3963/j.issn.1671-4431.2011.05.010
20 XIA J, LI T, FANG J, et al Numerical simulation of steel corrosion in chloride contaminated concrete[J]. Construction and Building Materials, 2019, 228: 116745
doi: 10.1016/j.conbuildmat.2019.116745
21 KRABBENH?FT K, KRABBENH?FT J Application of the poisson-nernst-planck equations to the migration test[J]. Cement and Concrete Research, 2008, 38 (1): 77- 88
doi: 10.1016/j.cemconres.2007.08.006
22 PIVONKA P, SMITH D, GARDINER B Investigation of Donnan equilibrium in charged porous materials: a scale transition analysis[J]. Transport in Porous Media, 2006, 69: 215- 237
23 JOHANNESSON B, HOSOKAWA Y, YAMADA K Numerical calculations of the effect of moisture content and moisture flow on ionic multi-species diffusion in the pore solution of porous materials[J]. Computers and Structures, 2009, 87 (1-2): 39- 46
doi: 10.1016/j.compstruc.2008.08.011
24 XIA J, LI L Numerical simulation of ionic transport in cement paste under the action of externally applied electric field[J]. Construction and Building Materials, 2013, 39: 51- 59
doi: 10.1016/j.conbuildmat.2012.05.036
25 LIU Q, YANG J, XIA J, et al A numerical study on chloride migration in cracked concrete using multi-component ionic transport models[J]. Computational Materials Science, 2015, 99: 396- 416
doi: 10.1016/j.commatsci.2015.01.013
26 JOHANNESSON B Comparison between the gauss’ law method and the zero current method to calculate multi-species ionic diffusion in saturated uncharged porous materials[J]. Computers and Geotechnics, 2010, 37 (5): 667- 677
doi: 10.1016/j.compgeo.2010.04.005
27 LIU Q. Multi-phase modelling of multi-species ionic migration in concrete[D]. Devonshire: University of Plymouth, 2014.
28 李仁民, 刘松玉, 方磊, 等 基于微观PNP多离子运移模型的多孔介质曲率系数分析[J]. 东南大学学报: 自然科学版, 2011, 41 (3): 647- 651
LI Ren-min, LIU Song-yu, FANG Lei, et al Tortuosity analysis of porous media based on micr-scale PNP multi-ions transport model[J]. Journal of Southeast University: Natural Science Edition, 2011, 41 (3): 647- 651
29 XIA J, LIU Q, MAO J, et al Effect of environmental temperature on efficiency of electrochemical chloride removal from concrete[J]. Construction and Building Materials, 2018, 193: 189- 195
doi: 10.1016/j.conbuildmat.2018.10.187
30 BENNET J, SCHUE T J, CLEAR K C, et al. Electrochemical chloride removal and protection of concrete bridge components: laboratory studies[R]. Washington DC: Laboratory Studies Strategic Highway Research Program, National Research Council, 1993.
31 XU C, JIN W L, WANG H L, et al Organic corrosion inhibitor of triethylenetetramine into chloride contamination concrete by eletro-injection method[J]. Construction and Building Materials, 2016, 115: 602- 617
doi: 10.1016/j.conbuildmat.2016.04.076
32 ISMAIL M, MUHAMMAD B Electrochemical chloride extraction effect on blended cements[J]. Advances in Cement Research, 2011, 23 (5): 241- 248
doi: 10.1680/adcr.2011.23.5.241
33 金伟良, 黄楠, 许晨, 等 双向电渗对钢筋混凝土修复效果的试验研究: 保护层阻锈剂、氯离子和总碱度的变化规律[J]. 浙江大学学报: 工学版, 2014, 48 (9): 1586- 1594
JIN Wei-liang, HUANG Nan, XU Cheng, et al Experimental research on effect of bidirectional electromigration rehabilitation on reinforced concrete -concentration changes of inhibitor, chloride ions and total alkalinity[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (9): 1586- 1594
34 俞凯奇, 毛江鸿, 陈佳芸, 等 混凝土电化学除氯过程钢筋周围氯离子迁移规律试验研究[J]. 混凝土, 2015, (2): 33- 35
YU Kai-qi, MAO Jiang-hong, CHEN Jia-yun, et al Experimental research on chloride migration regularity around steel-bar during electrochemical chloride extraction for reinforced concrete[J]. Concrete, 2015, (2): 33- 35
doi: 10.3969/j.issn.1002-3550.2015.02.009
35 CHANG C C, YEIH W, CHANG J J, et al Effects of stirrups on electrochemical chloride removal efficiency[J]. Construction and Building Materials, 2014, 68: 692- 700
doi: 10.1016/j.conbuildmat.2014.06.091
[1] 宋鑫,樊玮洁,毛江鸿,金伟良. 基于多级电迁的混凝土内氯离子动态控制效果[J]. 浙江大学学报(工学版), 2021, 55(3): 511-518.
[2] 于梦婷,汪怡平,苏楚奇,陶琦,史建鹏. 尾随半挂车队列行进的轿车燃油经济性研究[J]. 浙江大学学报(工学版), 2021, 55(3): 455-461.
[3] 曾超峰,王硕,袁志成,薛秀丽. 考虑邻近结构阻隔影响的基坑开挖前降水引发地层变形的特性[J]. 浙江大学学报(工学版), 2021, 55(2): 338-347.
[4] 赵伟国,路佳佳,赵富荣. 基于缝隙射流原理的离心泵空化控制研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1785-1794.
[5] 张尧,刘强,刘旭楠,许国栋,洪晓,周水华,刘维杰,赵西增. 韵律沙坝触发的裂流动态性研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1849-1857.
[6] 杨松松,王梅,杜建安,郭勇,耿炎. 管幕预筑法顶管施工顺序对地表沉降的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1706-1714.
[7] 夏晋,甘润立,方言,赵羽习,金伟良. 装配式结构套筒灌浆连接的混凝土结合界面直剪性能试验研究[J]. 浙江大学学报(工学版), 2020, 54(3): 491-498.
[8] 余亚波,邓亚东. 燃料电池客车高压舱氢气泄漏扩散[J]. 浙江大学学报(工学版), 2020, 54(2): 381-388.
[9] 张玉琦,蒋楠,贾永胜,周传波,罗学东,吴廷尧. 运营充水状态高密度聚乙烯管的爆破振动响应特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2120-2127.
[10] 刘昊苏,雷俊卿. 大跨度双层桁架主梁三分力系数识别[J]. 浙江大学学报(工学版), 2019, 53(6): 1092-1100.
[11] 邱文亮,胡哈斯,田甜,张哲. 影响钢管混凝土组合桥墩抗震性能的结构参数[J]. 浙江大学学报(工学版), 2019, 53(5): 889-898.
[12] 向羽,张树哲,李俊峰,魏正英,杨理想,姜立昊. Ti6Al4V的激光选区熔化单道成形数值模拟与实验验证[J]. 浙江大学学报(工学版), 2019, 53(11): 2102-2109.
[13] 陈文卓, 陈雁, 张伟明, 何少炜, 黎波, 姜俊泽. 圆弧面动态空气喷涂数值模拟[J]. 浙江大学学报(工学版), 2018, 52(12): 2406-2413.
[14] 戴理朝, 王磊, 张建仁, 羊日华. 钢绞线锈蚀产物填充及裂缝宽度预测[J]. 浙江大学学报(工学版), 2018, 52(1): 97-105.
[15] 刘瑞媚, 刘玉坤, 王智化, 刘颖祖, 胡利华,邵哲如, 岑可法. 垃圾焚烧炉排炉二次风配风的CFD优化模拟[J]. 浙江大学学报(工学版), 2017, 51(3): 500-507.