Please wait a minute...
浙江大学学报(工学版)
能源工程     
混合纳米填料对复合相变材料导热系数的影响
丁晴1, 方昕1, 范利武1, 程冠华2, 俞自涛1, 胡亚才1
1. 浙江大学 热工与动力系统研究所,浙江 杭州 310027;2. 浙江省能源与核技术应用研究院,浙江 杭州 310012
Effect of hybrid nanofillers on thermal conductivity of composite phase change materials
DING Qing1, FANG Xin1, FAN Li-wu1, CHENG Guan-hua2, YU Zi-tao1, HU Ya-cai1
1. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, China;2. Zhejiang Energy and Radiation Institute, Hangzhou 310012, China
 全文: PDF(1577 KB)   HTML
摘要:

为了研究混合纳米填料对复合相变材料导热系数的影响,制备以碳纳米管和银(或氧化铝)纳米颗粒为二元混合填料的有机类复合相变材料.采用瞬态平面热源法导热仪对复合相变材料在室温下固态时的有效导热系数进行测试.研究中综合考虑填料总加载量、碳纳米管/纳米颗粒的配比以及基底相变材料对复合相变材料有效导热系数的影响.实验结果表明,碳纳米管和纳米颗粒填料之间是互相抑制的,混合纳米填料所导致的复合相变材料导热系数增长甚至低于仅添加单一碳纳米管或纳米颗粒时的效果.在本研究所关注的较低的总加载量下(最高体积分数为1.5%),尚不足以构建出能够实现混合填料协同效果的有效导热网络.纳米填料分布的微观表征图片证实,虽然混合填料各自的分布都较为均匀,但导热机理的差异和较高的界面热阻使得不同纳米填料之间无法体现出理想的协同效应,反而导致当单一纳米填料之间的导热通路被破坏时会呈现出反效果.

Abstract:

In order to study the effect of hybrid nanofillers on the thermal conductivity of composite phase change materials(PCMs), organic composite PCMs filled with carbon nanotubes and silver (or alumina) nanoparticles as binary nanofillers were prepared. The effective thermal conductivity of the samples in solid phase was measured using the transient plane source technique at room temperature. The influence of the total loading, ratio of carbon nanotubes to nanoparticles, and base PCMs on the effective thermal conductivity of the composite PCMs were investigated experimentally. It was shown that the carbon nanotubes and nanoparticles act against each other. The thermal conductivity enhancement of the composite PCMs due to the presence of hybrid nanofillers is even lower than that with pure carbon nanotubes or nanoparticles. The relatively low total loadings (up to 1.5 vol%) of the nanofillers are not sufficient to lead to formation of effective heat conduction networks. This was confirmed by the microscopic images taken on the dispersion of nanofillers. Despite the existence of fairly uniform dispersion of the hybrid nanofillers, the desired synergetic effect between the dissimilar nanofillers is absent as a result of both the difference in their heat conduction mechanisms and the relatively high thermal interface resistance. The unfavorable effect occurs instead when the heat conduction paths are blocked within each type of nanofillers.

出版日期: 2015-02-01
:  TK 124  
基金资助:

国家自然科学基金资助项目(51276159);中国博士后科学基金资助项目(2012M511362,2013T60589)

通讯作者: 范利武,男,副教授     E-mail: liwufan@zju.edu.cn
作者简介: 丁晴(1989),女,硕士生,从事热物性测试研究.E-mail:515961105@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

丁晴, 方昕, 范利武, 程冠华, 俞自涛, 胡亚才. 混合纳米填料对复合相变材料导热系数的影响[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.02.020.

DING Qing, FANG Xin, FAN Li-wu, CHENG Guan-hua, YU Zi-tao, HU Ya-cai. Effect of hybrid nanofillers on thermal conductivity of composite phase change materials. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.02.020.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.02.020        http://www.zjujournals.com/eng/CN/Y2015/V49/I2/330

[1] FARID M M,KHUDHAIR A M,RAZACK S A K,et al. A review on phase change energy storage: materials and applications [J]. Energy Conversion and Management, 2004, 45(9/10): 1597-1615.
[2] FAN Liwu,KHODADADI J M. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review [J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 24-46.
[3] KHODADADI J M,FAN Li-wu,BABAEI H. Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review [J]. Renewable and Sustainable Energy Reviews, 2013, 24: 418-444.
[4] SHAIKH S, LAFDI K, HALLINAN K. Carbon nanoadditives to enhance latent energy storage of phase change materials [J]. Journal of Applied Physics, 2008, 103(9): 094302.
[5] WANG Ji-fen,XIE Hua-qing,XIN Zhong. Thermal properties of heat storage composites containing multiwalled carbon nanotubes [J]. Journal of Applied Physics, 2008, 104(11): 113-537.
[6] WANG Ji-fen,XIE Hua-qing,XIN Zhong. Thermal properties of paraffin based composites containing multiwalled carbon nanotubes [J]. Thermochimica Acta, 2009, 488(1/2): 39-42.
[7] ZENG Ju-lan,CAO Zhong,YANG Dao-wu,et al. Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM [J]. Journal of Thermal Analysis and Calorimetry, 2009, 95(2): 507-512.
[8] WANG Ji-fen,XIE Hua-qing,XIN Zhong,et al. Enhancing thermal conductivity of palmitic acid base phase change materials with carbon nanotubes as fillers [J]. Solar Energy, 2010, 84(2): 339-344.
[9] WANG Ji-fen, XIE Hua-qing, XIN Zhong, et al. Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes [J]. Carbon, 2010, 48(14): 3979-3986.
[10] CUI Yan-bin, LIU Cai-hong, HU Shan,et al. The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials [J]. Solar Energy Materials and Solar Cells, 2011, 95(4): 1208-1212.
[11] JIN Pei-jun,SUN Huan-huan, ZHONG Yun-xia, et al. Improvement of the thermal conductivity of a phase change material by the functionalized carbon nanotubes [J]. Chemical Engineering Science, 2012, 81(22): 140-145.
[12] JIANG Lin-qin, GAO Lian. Densified multiwalled carbon nanotubes-titanium nitride composites with enhanced thermal properties [J]. Ceramics International, 2008, 34(1): 231-235.
[13] YANG Kai,GU Ming-yuan. Enhanced thermal conductivity of epoxy nanocomposites filled with hybrid filler system of triethylenetetramine-functionalized multi-walled carbon nanotube /silane-modified nano-sized silicon carbide [J]. Composites Part A, 2010, 41(2): 215-221.
[14] TENG Chih-chun,MA Chen-chi M,CHIOU Kuo-chan,et al. Synergetic effect of hybrid boron nitride and multi-walled carbon nanotubes on the thermal conductivity of epoxy composites [J]. Materials Chemistry and Physics, 2011, 126(3): 722-728.
[15] IM H,KIM J. The effect of Al2O3 doped multi-walled carbon nanotubes on the thermal conductivity of Al2O3/epoxy terminated poly (dimethylsiloxane) composites [J]. Carbon, 2011, 49(11):3503-3501.
[16] MA Ai-jie, CHEN Wei-xing, HOU Yong-gang. Enhanced thermal conductivity of epoxy composites with MWCNTs/AlN hybrid filler [J]. Polymer Plastics Technology and Engineering, 2012, 51(15): 1578-1582.
[17] MOHAMMADALI B, ALIMORAD R, DAVOOD R, et al. Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids [J]. Thermochimica Acta, 2012, 549: 87-94.
[18] CHEN Li-fei, YU Wei, XIE Hua-qing. Enhanced thermal conductivity of nanofluids containing Ag/MWNT composites [J]. Powder Technology, 2012, 231: 18-20.

[1] 刘宜军,鲁欢,张桂勇,宗智. 采用单元基光滑点插值法的高温管道热应力分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2113-2119.
[2] 王宇飞,张良,王涛,俞自涛,胡亚才. 石墨蓄热式集热管内流动沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(11): 2087-2093.
[3] 周乃香, 张井志, 林金品, 李蔚. 毛细管内气-液Taylor流动换热特性数值模拟[J]. 浙江大学学报(工学版), 2016, 50(10): 1859-1864.
[4] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[5] 王涛, 王亮, 林贵平, 柏立战, 刘向阳, 卜雪琴, 谢广辉. TiO2纳米流体在液冷服上的应用实验研究[J]. 浙江大学学报(工学版), 2016, 50(4): 681-690.
[6] 冯钊赞, 李俊业, 李蔚. 单面加热微细窄通道内过冷沸腾的传热特性[J]. 浙江大学学报(工学版), 2016, 50(4): 671-682.
[7] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(3): 477-484.
[8] 李鹏程, 孙志坚, 黄浩, 程攻, 胡亚才. 带扰流孔波纹板蓄热元件的分析[J]. 浙江大学学报(工学版), 2016, 50(2): 306-311.
[9] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(2): 0-.
[10] 段俊杰, 伊国栋, 张树有. 大温差工况下模具发汗水膜冷却机理[J]. 浙江大学学报(工学版), 2015, 49(8): 1478-1486.
[11] 张井志, 李蔚. 微小管径圆管气-液Taylor流动数值模拟[J]. 浙江大学学报(工学版), 2015, 49(8): 1572-1576.
[12] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(7): 1242-1248.
[13] 黄连锋,田付有,厉青,范利武,俞自涛,武海云. 烧结矿立式冷却装置气固传热性能分析[J]. 浙江大学学报(工学版), 2015, 49(5): 916-923.
[14] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(4): 1-2.
[15] 过海,倪益华,王进,陆国栋. 车用空调冷凝器性能多目标优化方法[J]. 浙江大学学报(工学版), 2015, 49(1): 142-159.