Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (8): 1585-1596    DOI: 10.3785/j.issn.1008-973X.2023.08.011
土木工程、交通工程     
混凝土热-水-化-干湿应变多场耦合模型
余思臻1,2(),漆天奇3,王桥1,2,程勇刚1,2,*(),周伟1,2,常晓林1,2
1. 武汉大学 水资源工程与调度全国重点实验室,湖北 武汉 430072
2. 武汉大学 水工程科学研究院,湖北 武汉 430072
3. 长江勘测规划设计研究有限责任公司,湖北 武汉 430010
Thermo-hygro-chemical-dry-wet strain multi-field coupled model of concrete
Si-zhen YU1,2(),Tian-qi QI3,Qiao WANG1,2,Yong-gang CHENG1,2,*(),Wei ZHOU1,2,Xiao-lin CHANG1,2
1. State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China
2. Institute of Water Engineering Sciences, Wuhan University, Wuhan 430072, China
3. Changjiang Institute of Survey, Planning, Design and Research Co. Ltd, Wuhan 430010, China
 全文: PDF(2717 KB)   HTML
摘要:

为了准确研究水工混凝土在服役环境中因湿度变化引起的应变应力特性,从基本理论出发,建立修正的热-水-化-干湿应变(THCD)多场耦合模型. 在已有模型的基础上,引入优化的化学亲和力函数和吸附等温线方程,实现对水化过程和湿度多阶段演变的准确模拟,进一步建立湿度和应变之间的关系,使模型可以对湿度变化引起的应变应力特性进行描述. 基于模型对不同水灰质量比及养护条件下的自干燥、自收缩、单轴扩散干燥试验进行模拟验证,并进行干湿循环试验的数值模拟. 结果表明,所提模型具有较好的适应性,可以准确模拟试验中湿度和应变的演变过程,在干湿循环试验中由湿度引起的应变应力特性符合一般规律. 该模型可以为水工混凝土结构的安全评估和寿命预测提供支撑.

关键词: 水工混凝土热-水-化-干湿应变(THCD)多场耦合模型养护条件应变应力    
Abstract:

A fixed thermo-hygro-chemical-dry-wet strain (THCD) multi-field coupled model was established based on the basic theories, in order to accurately study the characteristics of strain and stress caused by humidity change for hydraulic concrete in service environment. Based on the existing model, optimized chemical affinity function and adsorption isotherm equation were introduced to realize accurate simulation of hydration process and multi-stage evolution of humidity. And the relationship between humidity and strain was established further, so that the model can describe the characteristics of strain and stress caused by humidity change. Based on this model, self-desiccation, autogenous shrinkage and uniaxial diffusion drying tests were simulated and verified under different water-cement ratios and curing conditions, and the numerical simulation of dry-wet cycle test was carried out. Results show that the model has good adaptability, which can accurately simulate the evolution process of humidity and strain in the tests. The characteristics of strain and stress caused by humidity in dry-wet cycle test conform to the general law. This model can provide support for safety evaluation and life prediction of hydraulic concrete structures.

Key words: hydraulic concrete    thermo-hygro-chemical-dry-wet strain (THCD) multi-field coupled model    curing condition    strain    stress
收稿日期: 2022-09-09 出版日期: 2023-08-31
CLC:  TV 331  
基金资助: 国家重点研发计划资助项目(2022YFC3005504);国家自然科学基金资助项目(U2040223, 51979207);第八届中国科协青年人才托举工程全额资助项目(2022QNRC001)
通讯作者: 程勇刚     E-mail: yusizhen@whu.edu.cn;chengyg@whu.edu.cn
作者简介: 余思臻(1997—),男,硕士生,从事高坝结构及水工混凝土数值仿真研究. orcid.org/0000-0001-9864-3300. E-mail: yusizhen@whu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
余思臻
漆天奇
王桥
程勇刚
周伟
常晓林

引用本文:

余思臻,漆天奇,王桥,程勇刚,周伟,常晓林. 混凝土热-水-化-干湿应变多场耦合模型[J]. 浙江大学学报(工学版), 2023, 57(8): 1585-1596.

Si-zhen YU,Tian-qi QI,Qiao WANG,Yong-gang CHENG,Wei ZHOU,Xiao-lin CHANG. Thermo-hygro-chemical-dry-wet strain multi-field coupled model of concrete. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1585-1596.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.08.011        https://www.zjujournals.com/eng/CN/Y2023/V57/I8/1585

图 1  绝热温升试验与数值模拟的温度结果对比
图 2  自干燥试验与数值模拟的湿度结果对比
图 3  热-水-化-干湿应变(THCD)多场耦合模型示意图
参数 数值 参数 数值
cp/(J·kg?1·K?1) 1100[18] Q/(kJ·kg?1) 500[18]
(Eac/R)/K 5000[13] β2 8×10?4[3]
ξc 0.253[27] β3 ?0.012[3]
a 5.5[17] ηc 9.4[4]
表 1  数值模拟通用模型参数
mw / mc ρ / (kg·m?3) mc / kg g1 kc β1 / (108 h?1)
0.28 2394 541 2.00 0.100 1.94
0.30 2370 450 1.95 0.235 10.30
0.40 2344 423 1.73 0.251 3.65
0.43 2390 345 1.67 0.364 8.62
0.62 2386 240 1.41 0.456 5.00
0.68 2257 310 1.36 0.374 4.00
表 2  自干燥试验主要模型参数
mw / mc E28 / GPa βE k0 k1
0.30 44.7 0.36 64.29 2.00
0.43 40.2 0.40 49.67 3.00
mw / mc k2 Ap v r / 10?4
0.30 ?1.10 0.01250 1.70 2.5
0.43 ?1.45 0.00302 3.65 3.2
表 3  自收缩试验主要模型参数
图 4  混凝土试件自干燥试验的验证
图 5  混凝土试件自收缩试验的验证
mw / mc g1 kc Dd1 / (mm2·d?1) Hd
1) 注:(a, 25%)表示图6(a)中养护湿度为25%的情况.
0.34 (a1), 25%) 1.99 0.289 400 0.85
0.34 (a, 50%) 1.92 0.289 350 0.90
0.34 (a, 75%) 1.82 0.287 300 0.94
0.34 (b, 25%) 1.99 0.322 400 0.85
0.34 (b, 50%) 2.21 0.301 350 0.90
0.34 (b, 75%) 2.50 0.277 300 0.94
0.60 1.43 0.450 700 0.81
0.28 2.00 0.215 240 0.78
表 4  单轴扩散干燥试验模型参数
图 6  混凝土试件单轴扩散干燥试验验证
图 7  混凝土试件干湿循环试验示意图[12]
t / d 试验条件 Text / K hd
0~14 密封养护 293.15 ?
14~28 单轴干燥 293.15 0.40
28~42 单轴湿润 293.15 1.00
42~56 单轴干燥 293.15 0.40
56~70 单轴湿润 293.15 1.00
70~84 单轴干燥 293.15 0.40
84~98 单轴湿润 293.15 1.00
表 5  干湿循环试验环境条件[12]
图 8  自干燥1 d时距干燥面3 mm处的网格敏感性分析
图 9  自干燥1 d时距干燥面3 mm处的容差敏感性分析
t / d Dd1 / (mm2·d?1) Hd n α
0~14 (密封干燥) 0 ? ? ?
14~28 (干燥) 260 0.75 4 0.10
28~42 (湿润) 800 0.80 4 0.10
42~56 (干燥) 230 0.75 4 0.10
56~70 (湿润) 400 0.80 4 0.10
70~84 (干燥) 230 0.75 4 0.10
84~98 (湿润) 260 0.80 4 0.10
表 6  干湿循环试验水分扩散系数参数
模型参数 数值 模型参数 数值 模型参数 数值
ρ/(kg·m?3) 2370 mc/kg 450 k1 2.1
ρc/(kg·m?3) 3000 β1/(h?1) 1.03×109 k2 ?1.1
E28/GPa 44.7 r 0.00025 Ap 0.0125
βE 0.38 k0 64.29 v 1.80
表 7  干湿循环试验主要模型参数[26]
图 10  距干燥面不同距离的相对湿度变化过程
图 11  距干燥面不同距离的干湿应变变化过程
图 12  干湿循环试验25 d时的数值模拟结果
图 13  干湿循环试验30 d时的数值模拟结果
图 14  干湿循环试验52 d时的数值模拟结果
图 15  干湿循环试验57 d时的数值模拟结果
1 WU S X, HUANG D H, LIN F B, et al Estimation of cracking risk of concrete at early age based on thermal stress analysis[J]. Journal of Thermal Analysis and Calorimetry, 2011, 105 (1): 171- 186
doi: 10.1007/s10973-011-1512-y
2 唐世斌. 混凝土温湿型裂缝开裂过程细观数值模型研究[D]. 大连: 大连理工大学, 2009.
TANG Shi-bin. Study on mesoscopic numerical model of concrete cracking process of temperature-wet crack [D]. Dalian: Dalian University of Technology, 2009.
3 ZHOU W, QI T Q, LIU X H, et al A hygro-thermo-chemical analysis of concrete at an early age and beyond under dry-wet conditions based on a fixed model[J]. International Journal of Heat and Mass Transfer, 2017, 115: 488- 499
4 ZHOU W, FENG C Q, LIU X H, et al A macro-meso chemo-physical analysis of early-age concrete based on a fixed hydration model[J]. Magazine of Concrete Research, 2016, 68 (19): 981- 994
doi: 10.1680/jmacr.15.00321
5 ZHOU W, QI T Q, LIU X H, et al A meso-scale analysis of the hygro-thermo-chemical characteristics of early-age concrete[J]. International Journal of Heat and Mass Transfer, 2019, 129: 690- 706
doi: 10.1016/j.ijheatmasstransfer.2018.10.001
6 LI X, REN J J, WANG J, et al Drying shrinkage of early-age concrete for twin-block slab track[J]. Construction and Building Materials, 2020, 243: 118237
doi: 10.1016/j.conbuildmat.2020.118237
7 刘加平, 田倩, 王育江, 等 现代混凝土收缩开裂的评估方法与控制关键技术[J]. 工程, 2021, 7 (3): 348- 357
LIU Jia-ping, TIAN Qian, WANG Yu-jiang, et al Evaluation method and mitigation strategies for shrinkage cracking of modern concrete[J]. Engineering, 2021, 7 (3): 348- 357
doi: 10.1016/j.eng.2021.01.006
8 刘有志, 张国新 混凝土干缩开裂机理宏、细观力学分析研究进展[J]. 水力发电, 2013, 39 (4): 24- 28
LIU You-zhi, ZHANG Guo-xin Research progress on macro and micro mechanics analysis of dry shrinkage cracking mechanism of concrete[J]. Water Power, 2013, 39 (4): 24- 28
doi: 10.3969/j.issn.0559-9342.2013.04.008
9 高珊. 混凝土面板堆石坝面板裂缝统计分析及渗流数值模拟研究[D]. 西安: 西安理工大学, 2021.
GAO Shan. Statistical analysis and seepage numerical simulation of concrete face rockfill dam[D]. Xi’an: Xi’an University of Technology, 2021.
10 BENTZ D P, WALLER V, LARRARD D F Prediction of adiabatic temperature rise in conventional and high-performance concretes using a 3-D microstructural model[J]. Cement and Concrete Research, 1998, 28 (2): 285- 297
doi: 10.1016/S0008-8846(97)00264-0
11 KIM J K, LEE C S Moisture diffusion of concrete considering self-desiccation at early ages[J]. Cement and Concrete Research, 1999, 29 (12): 1921- 1927
doi: 10.1016/S0008-8846(99)00192-1
12 ZHANG J, GAO Y, HAN Y D, et al Shrinkage and interior humidity of concrete under dry-wet cycles[J]. Drying Technology, 2012, 30 (6): 583- 596
doi: 10.1080/07373937.2011.653614
13 RUIZ C M, OLIVER O X, PRATO T Thermo-chemical- mechanical model for concrete. I: hydration and aging[J]. Journal of Engineering Mechanics, 1999, 125 (9): 1018- 1027
doi: 10.1061/(ASCE)0733-9399(1999)125:9(1018)
14 CERVERA M, FARIA R, OLIVER J, et al Numerical modelling of concrete curing, regarding hydration and temperature phenomena[J]. Computers and Structures, 2002, 80 (18/19): 1511- 1521
15 ULM F J, COUSSY O Modeling of thermo-chemical- mechanical couplings of concrete at early ages[J]. Journal of Engineering Mechanics, 1995, 121 (7): 785- 794
doi: 10.1061/(ASCE)0733-9399(1995)121:7(785)
16 BAŽANT Z P, NAJJAR L J Nonlinear water diffusion in nonsaturated concrete[J]. Matériaux et Construction, 1972, 5 (1): 3- 20
17 GAWIN D, PESAVENTO F, SCHREFLER B A Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part I: hydration and hygro-thermal phenomena[J]. International Journal for Numerical Methods in Engineering, 2006, 67 (3): 299- 331
doi: 10.1002/nme.1615
18 LUZIO D G, CUSATIS G Hygro-thermo-chemical modeling of high performance concrete. I: theory[J]. Cement and Concrete Composites, 2009, 31 (5): 301- 308
doi: 10.1016/j.cemconcomp.2009.02.015
19 LUZIO D G, CUSATIS G Hygro-thermo-chemical modeling of high-performance concrete. II: numerical implementation, calibration, and validation[J]. Cement and Concrete Composites, 2009, 31 (5): 309- 324
doi: 10.1016/j.cemconcomp.2009.02.016
20 JENDELE L, SMILAUER V, CERVENKA J Multiscale hydro-thermo-mechanical model for early-age and mature concrete structures[J]. Advances in Engineering Software, 2014, 72: 134- 146
doi: 10.1016/j.advengsoft.2013.05.002
21 SHEN D J, LIU C, WANG M L, et al Prediction model for internal relative humidity in early-age concrete under different curing humidity conditions[J]. Construction and Building Materials, 2020, 265: 119987
doi: 10.1016/j.conbuildmat.2020.119987
22 RHODES J A, CARREIRA D J. Prediction of creep, shrinkage, and temperature effects in concrete structures [J]. American Concrete Institute, 1982.
23 GILLILAND J A. Thermal and shrinkage effects in high performance concrete structures during construction[M]. University of Calgary, 2000.
24 高原, 张君, 孙伟 干湿循环下混凝土湿度与变形的测量[J]. 清华大学学报: 自然科学版, 2012, 52 (2): 144- 149
GAO Yuan, ZHANG Jun, SUN Wei Measurement of concrete moisture and deformation under dry-wet cycle[J]. Journal of Tsinghua University: Science and Technology, 2012, 52 (2): 144- 149
25 钟卓, 黄乐鹏, 张恒 混凝土内部湿度场与自约束应力场的研究[J]. 硅酸盐通报, 2021, 40 (8): 2609- 2621
ZHONG Zhuo, HUANG Le-peng, ZHANG Heng Study on humidity field and self-constrained stress field in concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40 (8): 2609- 2621
doi: 10.16552/j.cnki.issn1001-1625.2021.08.011
26 高原. 干湿环境下混凝土收缩与收缩应力研究[D]. 北京: 清华大学, 2013.
GAO Yuan. Study on shrinkage and shrinkage stress of concrete in dry and wet environment[D]. Beijing: Tsinghua University, 2013.
27 PANTAZOPOULOU S J, MILLS R H Microstructural aspects of the mechanical response of plain concrete[J]. Materials Journal, 1995, 92 (6): 605- 616
28 BAŽANT Z P, PRASANNAN S Solidification theory for concrete creep. I: formulation[J]. Journal of Engineering Mechanics, 1989, 115 (8): 1691- 1703
29 NEVILLE A M. Properties of concrete[M]. London: Longma , 1995.
30 BAZANT Z P, THONGUTHAI W Pore pressure and drying of concrete at high temperature[J]. Journal of the Engineering Mechanics Division, 1978, 104 (5): 1059- 1079
doi: 10.1061/JMCEA3.0002404
31 阴国强, 张秀崧, 卢晓春, 等 等温条件下混凝土内部湿迁移规律研究[J]. 水电能源科学, 2022, 40 (4): 162- 165
YIN Guo-qiang, ZHANG Xiu-song, LU Xiao-chun, et al Study on the law of wet migration in concrete under isothermal conditions[J]. Water Resources and Power, 2022, 40 (4): 162- 165
32 KANG S T, KIM J S, LEE Y, et al Moisture diffusivity of early age concrete considering temperature and porosity[J]. KSCE Journal of Civil Engineering, 2012, 16 (1): 179- 188
doi: 10.1007/s12205-012-1445-4
33 MJÖRNELL K N. A model on self-desiccation in high- performance concrete [C]// Proceedings of an International Research Seminar on Self-desiccation and its Importance in Concrete Technology. Lund: [s. n.]. 1997: 141-157.
34 BAROGHEL-BOUNY V, MAINGUY M, LASSABA- TERE T, et al Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials[J]. Cement and Concrete Research, 1999, 29 (8): 1225- 1238
doi: 10.1016/S0008-8846(99)00102-7
35 XI Y P, BAZANT Z P, JENNINGS H M Moisture diffusion in cementitious materials adsorption isotherms[J]. Advanced Cement Based Materials, 1994, 1 (6): 248- 257
doi: 10.1016/1065-7355(94)90033-7
36 BENTZ D P Transient plane source measurements of the thermal properties of hydrating cement pastes[J]. Materials and Structures, 2007, 40: 1073- 1080
37 KOVLER K, ZHUTOVSKY S Overview and future trends of shrinkage research[J]. Materials and Structures, 2006, 39 (9): 827- 847
doi: 10.1617/s11527-006-9114-z
38 赵立晓, 王鹏刚, 王兰芹, 等 混凝土内部温湿度响应参数分析: 水分扩散系数与导热系数[J]. 材料导报, 2021, 35 (12): 12075- 12080
ZHAO Li-xiao, WANG Peng-gang, WANG Lan-qin, et al Analysis of concrete internal temperature and humidity response parameters: water diffusion coefficient and thermal conductivity coefficient[J]. Materials Reports, 2021, 35 (12): 12075- 12080
doi: 10.11896/cldb.20040215
[1] 鲍佳文,高强,唐林,赵唯坚. 钢筋套筒灌浆连接拉伸性能的精细有限元分析[J]. 浙江大学学报(工学版), 2023, 57(4): 814-823.
[2] 龚涛,刘开富,谢新宇,许纯泰,娄扬,郑凌逶. 基于次加载面摩擦模型的接触面剪切特性研究[J]. 浙江大学学报(工学版), 2022, 56(7): 1328-1335, 1352.
[3] 王杉杉,高明,石健将. 双Buck-Boost集成DAB型三端口直流变换器电流应力优化[J]. 浙江大学学报(工学版), 2022, 56(7): 1425-1435, 1472.
[4] 刘彩霞,潘亭亭,孙一帆,李帅,刘平,黄英. 用于康复训练的分段式气动软体驱动器[J]. 浙江大学学报(工学版), 2022, 56(6): 1127-1134.
[5] 孟嘉,李俊超,陈云敏. 固废应变硬化机理与超重力模拟适用性[J]. 浙江大学学报(工学版), 2022, 56(4): 664-673.
[6] 杜永潇,卫军,孙晓立. 预应力混凝土梁自振频率的疲劳演变[J]. 浙江大学学报(工学版), 2022, 56(10): 2007-2018.
[7] 纪超,张庆河,马殿光,吴岳峰,姜奇. 基于新型三维辐射应力的近岸波流耦合模型[J]. 浙江大学学报(工学版), 2022, 56(1): 128-136.
[8] 蒋佳琪,徐日庆,裘志坚,詹晓波,汪悦,成广谋. 超固结土的蛋形弹塑性本构模型[J]. 浙江大学学报(工学版), 2021, 55(8): 1444-1452.
[9] 曾星宇,李俊阳,王家序,唐挺,李聪. 基于有限元法的谐波双圆弧齿廓设计和修形[J]. 浙江大学学报(工学版), 2021, 55(8): 1548-1557.
[10] 金慧,袁大军,金大龙. 盾构掘进行为对盾壳-土体接触应力的影响[J]. 浙江大学学报(工学版), 2021, 55(6): 1036-1047.
[11] 杨以国,刘开富,谢新宇. 循环荷载下长短桩桩网复合地基变形试验研究[J]. 浙江大学学报(工学版), 2021, 55(6): 1027-1035.
[12] 任嘉豪,王海鸥,邢江宽,罗坤,樊建人. 湍流火焰切向应变率的低维近似模型[J]. 浙江大学学报(工学版), 2021, 55(6): 1128-1134.
[13] 谢磊,李庆华,徐世烺. 活性粉末混凝土冲击压缩性能及本构关系[J]. 浙江大学学报(工学版), 2021, 55(5): 999-1009.
[14] 朱斌,蒋楠,周传波,贾永胜,罗学东,吴廷尧. 粉质黏土层直埋铸铁管道爆破地震效应[J]. 浙江大学学报(工学版), 2021, 55(3): 500-510.
[15] 孙海超,王文军,凌道盛. 低掺量水泥固化土的力学特性及微观结构[J]. 浙江大学学报(工学版), 2021, 55(3): 530-538.