Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (4): 675-682    DOI: 10.3785/j.issn.1008-973X.2023.04.004
机械与能源工程     
1 000 MW燃煤机组湿法脱硫装置氧化系统运行优化
范海东1,2(),陈竹1,赵中阳1,梁成思4,郑成航1,3,*(),高翔1,3
1. 浙江大学 国家环境保护燃煤大气污染控制工程技术中心,浙江 杭州 310027
2. 白马湖实验室,浙江 杭州 310056
3. 浙江大学 嘉兴研究院,浙江 嘉兴 314031
4. 浙江浙能技术研究院有限公司,浙江 杭州 311121
Operating optimization of oxidation subsystem of wet flue gas desulfurization system of 1 000 MW coal-fired unit
Hai-dong FAN1,2(),Zhu CHEN1,Zhong-yang ZHAO1,Cheng-si LIANG4,Cheng-hang ZHENG1,3,*(),Xiang GAO1,3
1. State Environmental Protection Center for Coal-Fired Air Pollution Control, Zhejiang University, Hangzhou 310027, China
2. Baima Lake Laboratory, Hangzhou 310056, China
3. Jiaxing Research Institute, Zhejiang University, Jiaxing 314031, China
4. Zhejiang Zheneng Technology Research Institute Limited Company, Hangzhou 311121, China
 全文: PDF(1594 KB)   HTML
摘要:

针对石灰石-石膏湿法烟气脱硫技术应用过程中存在的变负荷变SO2质量浓度条件下氧化风过量、氧化系统运行能耗高的问题,建立基于强制氧化和自然氧化过程机理的脱硫装置氧化过程模型,分析烟气中O2体积分数、气泡直径、液滴粒径、反应增强因子等关键参数对强制氧化率和自然氧化率的影响规律. 提出基于脱硫装置氧化过程模型的氧化系统实时运行优化方法,在1 000 MW机组脱硫装置上开展工业验证研究. 结果表明,模型计算的四价硫变化量均方根误差不超过0.15 mol/m3. 随着机组负荷在520 MW到1 000 MW之间变化,自然氧化率为10%~35%,氧化风需求量为107~360 m3/min. 相比于按额定功率运行,氧化系统实时运行优化方法能够在保证脱硫装置氧化率的前提下降低23.7%的能耗.

关键词: 石灰石-石膏湿法烟气脱硫自然氧化率强制氧化率氧化系统运行优化节能降耗    
Abstract:

A model of the oxidation process in the wet flue gas desulfurization (WFGD) based on the mechanism of forced oxidation and natural oxidation process was established aiming at the problems of excessive oxidation air and high energy consumption of oxidation system under variable load and SO2 mass concentration operation existing in the application of limestone-gypsum WFGD technology. The influence of key parameters such as the O2 volume fraction in the flue gas, the diameter of bubbles or droplets and reaction enhancement factor on forced oxidation rate and natural oxidation rate was analyzed. A real-time operation optimization method of oxidation system based on the above-mentioned oxidation process model was proposed, and an industrial test was conducted on a 1 000 MW desulfurization unit. Results showed that the root-mean-square error (RMSE) of the variation of sulfur was less than 0.15 mol/m3. The natural oxidation rate fluctuated between 10% and 35% and the demand for oxidizing air fluctuated between 107 m3/min and 360 m3/min with the unit load fluctuating between 520 MW and 1 000 MW. The real-time operating optimization method of the oxidation subsystem can reduce the energy consumption by 23.7% compared with operating at rated power under the premise of enough oxidation rate of the WFGD system.

Key words: wet limestone-gypsum flue gas desulfurization    natural oxidation rate    forced oxidation rate    oxidation system operation optimization    energy saving and consumption reduction
收稿日期: 2022-04-06 出版日期: 2023-04-21
CLC:  X 511  
基金资助: 国家重点研发计划资助项目(2020YFB0606203-4)
通讯作者: 郑成航     E-mail: fan_haidong@163.com;zhengch2003@zju.edu.cn
作者简介: 范海东(1979—),男,高级工程师,硕士,从事能源与环保技术的研究. orcid.org/0009-0007-8683-045X.E-mail: fan_haidong@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
范海东
陈竹
赵中阳
梁成思
郑成航
高翔

引用本文:

范海东,陈竹,赵中阳,梁成思,郑成航,高翔. 1 000 MW燃煤机组湿法脱硫装置氧化系统运行优化[J]. 浙江大学学报(工学版), 2023, 57(4): 675-682.

Hai-dong FAN,Zhu CHEN,Zhong-yang ZHAO,Cheng-si LIANG,Cheng-hang ZHENG,Xiang GAO. Operating optimization of oxidation subsystem of wet flue gas desulfurization system of 1 000 MW coal-fired unit. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 675-682.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.04.004        https://www.zjujournals.com/eng/CN/Y2023/V57/I4/675

图 1  脱硫装置的自然氧化过程与强制氧化过程
图 2  现场实测与模型预测的四价硫浓度对比
图 3  关键参数在不同原烟气体积流量下对自然氧化率的影响
图 4  关键参数在不同气泡直径下对强制氧化率的影响
图 5  脱硫装置氧化系统优化运行方法
图 6  机组负荷与自然氧化率
图 7  机组负荷与氧化风需求量
运行策略 运行风机 fl,a/Hz fh,a/Hz Pa/kW rw/%
按额定频率 1号 76.0 76.0 225.0
按额定频率 2号 85.0 85.0 225.0
按运行经验 1号 64.8 75.3 216.3 4.3
按运行经验 2号 75.0 84.5 215.9 4.0
按优化方法 1号 23.7 70.0 167.4 25.6
按优化方法 2号 37.4 79.5 176.0 21.8
表 1  氧化系统不同运行策略的能耗对比分析
1 国家发展和改革委员会国家能源局. 电力发展“十四五”规划(2021——2025)年[R]. 北京: 国家发展和改革委员会能源局, 2021.
National Energy Administration of National Development and Reform Commission. "14th Five-Year Plan" for Electric Power Development (2021-2025) [R]. Beijing: National Energy Administration of National Development and Reform Commission, 2021.
2 郦建国, 朱法华, 孙雪丽 中国火电大气污染防治现状及挑战[J]. 中国电力, 2018, 51 (6): 2- 10
LI Jian-guo, ZHU Fa-hua, SUN Xue-li Current situation and challenges of air pollution prevention and control from thermal power in China[J]. China Electric Power, 2018, 51 (6): 2- 10
3 杨用龙, 苏秋凤, 张杨, 等 双塔双循环脱硫系统优化与经济性运行研究[J]. 中国电力, 2018, 51 (4): 136- 142
YANG Yong-long, SU Qiu-feng, ZHANG Yang, et al Research on optimization and economical operation of double-tower double-cycle desulfurization system[J]. China Electric Power, 2018, 51 (4): 136- 142
4 SUN R. Optimized operation analysis of double-tower double-circulation desulfurization system in a high-sulfur coal-fired power plant [C]// Proceedings of the 2019 IEEE 3rd International Conference on Green Energy and Applications. Taiyuan: IEEE, 2019.
5 XU G, YANG Y, WANG N, et al. Analysis on energy consumption and optimal operation of FGD system in power plant [C]// Proceedings of the 2010 Asia-Pacific Power and Energy Engineering Conference. Chengdu: IEEE, 2010.
6 李文鼎, 高惠华, 蔡文丰 石灰石–石膏湿法脱硫吸收塔结垢分析及预防措施[J]. 发电技术, 2019, 40 (1): 51- 55
LI Wen-ding, GAO Hui-hua, CAI Wen-feng Scaling analysis and preventive measures of limestone-gypsum wet desulfurization absorption tower[J]. Power Generation Technology, 2019, 40 (1): 51- 55
doi: 10.12096/j.2096-4528.pgt.18069
7 张鑫博. 脱硫循环浆液中亚硫酸钙的氧化控制研究[D]. 济南: 山东大学, 2020.
ZHANG Xin-bo. Oxidation control of calcium sulfite in desulfurization circulating slurry [D]. Jinan: Shandong University, 2020.
8 朱法华, 王临清 煤电超低排放的技术经济与环境效益分析[J]. 环境保护, 2014, 42 (21): 28- 33
ZHU Fa-hua, WANG Lin-qing Technical, economic and environmental benefit analysis of ultra-low emissions from coal power[J]. Environmental Protection, 2014, 42 (21): 28- 33
doi: 10.14026/j.cnki.0253-9705.2014.21.004
9 WARYCH J, SZYMANOWSKI M Optimum values of process parameters of the "wet limestone flue gas desulfurization system"[J]. Chemical Engineering and Technology, 2015, 25 (4): 427- 432
10 REN R, SHI F, JIANG D, et al. Dynamical process and mass transfer of the wet-limestone flue gas desulfurization [C]// Proceedings of the 2011 International Conference on Remote Sensing, Environment and Transportation Engineering. Nanjing: IEEE, 2011.
11 ZHAO Y, GUO T, ZHANG Z, et al. Wet flue gas desulfurization using a physical mixture of limestone and lime for energy savings [C]// Proceedings of the 2011 International Symposium on Water Resource and Environmental Protection. Xi'an: IEEE, 2011.
12 LIU Q, LI X, WANG K, et al. CPS-based slurry pH control in wet flue gas desulfurization system [C]// Proceedings of the 2020 Chinese Control And Decision Conference. Hefei: IEEE, 2020.
13 赵林林 350MW机组脱硫氧化风机节能优化试验[J]. 华电技术, 2019, 41 (9): 45- 48
ZHAO Lin-lin Energy saving optimization test of desulfurization and oxidation fan of 350MW unit[J]. Integrated Intelligent Energy, 2019, 41 (9): 45- 48
14 谷小兵, 李建, 宁翔, 等 脱硫系统罗茨氧化风机的节能优化[J]. 节能技术, 2021, 39 (6): 570- 574
GU Xiao-bing, LI Jian, NING Xiang, et al Energy saving optimization of Roots oxidation fan in desulfurization system[J]. Energy Saving Technology, 2021, 39 (6): 570- 574
doi: 10.3969/j.issn.1002-6339.2021.06.019
15 JERZY W, MAREK S Model of the wet limestone flue gas desulfurization process for cost optimization[J]. Industrial and Engineering Chemistry Research, 2001, 40 (12): 2597- 2605
doi: 10.1021/ie0005708
16 KAKARANIYA S, KARI C, VERMA R, et al Gas absorption in slurries of fine particles: SO2-Mg(OH)(2)-MgSO3 system [J]. Industrial and Engineering Chemistry Research, 2007, 46 (7): 1904- 1913
doi: 10.1021/ie061461h
17 林永明. 大型石灰石-石膏湿法喷淋脱硫技术研究及工程应用[D]. 杭州: 浙江大学, 2006.
LIN Yong-ming. Research and engineering application of large limestone-gypsum wet spray desulfurization technology [D]. Hangzhou: Zhejiang University, 2006.
18 LEE M Fick's law, Green-Kubo formula, and Heisenberg's equation of motion[J]. Physical Review Letters, 2000, 85 (12): 2422
doi: 10.1103/PhysRevLett.85.2422
19 FULLER E, SCHETTLER P, GIDDINGS J New method for prediction of binary gas-phase diffusion coefficients[J]. Industrial and Engineering Chemistry, 1966, 58 (5): 18- 27
doi: 10.1021/ie50677a007
20 LAWSON J, BODENSCHATZ E, KNUTSEN A, et al Direct assessment of Kolmogorov's first refined similarity hypothesis[J]. Physical Review Fluids, 2019, 4 (2): 022601
doi: 10.1103/PhysRevFluids.4.022601
[1] 高尔豪,寿恬雨,黄蓓,王伟,施耀. CuCr2O4催化剂形貌特征与其SCR脱硝性能的关系[J]. 浙江大学学报(工学版), 2022, 56(6): 1199-1205.
[2] 王涛,董昊,侯成龙,王欣茹. 直接空气捕集CO2吸附剂综述[J]. 浙江大学学报(工学版), 2022, 56(3): 462-475.
[3] 韦彦斐,周荣,周敏捷,高翔. 水泥炉窑SNCR-SCR联合脱硝中试实验研究[J]. 浙江大学学报(工学版), 2020, 54(10): 1986-1992.
[4] 王军明,赵兴亚,陈玲红,韩黎霞,高翔,岑可法. 氨对二次有机气溶胶光学特性的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1812-1818.
[5] 李康为,应方,陈玲红,郑仙珏,韩黎霞,吴学成,高翔,岑可法. 杭州市主城区VOCs污染特征及影响因素[J]. 浙江大学学报(工学版), 2019, 53(4): 671-683.
[6] 胡磊青,程军,王亚丽,刘建忠,周俊虎,岑可法. PVP改性PDMS/PAN中空纤维复合膜提升表面亲水性[J]. 浙江大学学报(工学版), 2019, 53(2): 228-233.
[7] 程军,刘建峰,张曦,张泽,田江磊,周俊虎,岑可法. 微藻水热提取油脂经脱氧断键制航油[J]. 浙江大学学报(工学版), 2019, 53(2): 214-219.
[8] 陈文聪, 侯艺文, 吴建, 王莉红. 化纤行业PM2.5和VOCs排放特性研究[J]. 浙江大学学报(工学版), 2017, 51(1): 145-152.
[9] 李清毅, 孟炜, 吴国潮, 张军, 朱松强, 胡达清, 郑成航, 高翔, 王汝能, 刘海蛟. 超低排放脱硝运行状态及稳定性评估[J]. 浙江大学学报(工学版), 2016, 50(12): 2303-2311.
[10] 朱燕群, 杨业, 黄建鹏, 林法伟, 马强, 徐超群, 王智化, 岑可法. 橡胶厂60000 m3/h炭黑干燥炉烟气臭氧脱硝试验研究[J]. 浙江大学学报(工学版), 2016, 50(10): 1865-1870.
[11] 张军, 李存杰, 郑成航, 翁卫国, 朱松强, 王丁振, 高翔, 岑可法. 筛板塔细颗粒物协同脱除特性实验[J]. 浙江大学学报(工学版), 2016, 50(8): 1516-1520.
[12] 邱珊, 陈聪, 邓凤霞, 冀雅婉, 丁晓, 马放. 石墨电极E Fenton法处理罗丹明B废水[J]. 浙江大学学报(工学版), 2016, 50(4): 704-713.
[13] 周斌,周昊,王建阳,岑可法. 神华煤灰掺混木屑灰在O2/CO2气氛下的烧结特性[J]. 浙江大学学报(工学版), 2016, 50(3): 468-476.
[14] 周旭萍, 方梦祥, 项群扬, 蔡丹云, 王涛, 骆仲泱. 氨基酸盐吸收二氧化碳过程的传质特性[J]. 浙江大学学报(工学版), 2016, 50(2): 312-319.
[15] 宋祖威, 仲兆平, 张波, 吕子婷, 丁宽. 玉米秸秆和聚丙烯共催化热解试验[J]. 浙江大学学报(工学版), 2016, 50(2): 333-340.