Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (4): 666-674    DOI: 10.3785/j.issn.1008-973X.2023.04.003
机械与能源工程     
镍钴铝锂离子电池在不同SOC区间的老化
祝庆伟1(),吴启超2,徐一丹2,俞小莉2,3,黄瑞2,3,*()
1. 浙江大学 工程师学院,浙江 杭州 310015
2. 浙江大学 能源工程学院,浙江 杭州 310027
3. 浙江省汽车智能热管理科学与技术重点实验室,浙江 台州 317200
Aging of nickel-cobalt-aluminum lithium-ion battery in different SOC intervals
Qing-wei ZHU1(),Qi-chao WU2,Yi-dan XU2,Xiao-li YU2,3,Rui HUANG2,3,*()
1. Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
2. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
3. Key Laboratory of Automotive Intelligent Thermal Management Science and Technology of Zhejiang Province, Taizhou 317200, China
 全文: PDF(1226 KB)   HTML
摘要:

为了探明SOC循环区间对电池老化的影响,采用镍钴铝锂离子电池为研究对象,通过循环老化与性能测试实验探究电池在不同的单SOC循环区间上的容量衰退与内阻增长的规律,采用差分电压法分析电池的老化机理. 结合贝叶斯优化和长短期记忆网络,建立电池老化预测模型. 根据电池在不同的变SOC循环区间工况上的实验结果,分析前、后2个SOC区间的变化方式以及SOC区间的循环顺序对电池容量衰退规律的影响. 结果表明,在SOC循环区间不变时,区间的宽度越大电池的老化速度越快,可循环锂离子损失是导致电池老化的主要原因,所建立的容量衰退预测模型具有较高的精度. 在SOC循环区间发生改变后电池的老化规律在短期内会发生明显的变化,当电池按照不同的SOC循环区间顺序老化时,即使在2个区间上经历相同的循环次数,电池的老化程度也不同.

关键词: 镍钴铝锂离子电池循环老化SOC区间形式老化模型老化机理    
Abstract:

Nickel-cobalt-aluminum lithium-ion battery was used as the research object in order to analyze the influence of SOC cycle interval on battery aging. The law of capacity decline and internal resistance growth of batteries in different single SOC cycle intervals was explored through cycle aging and performance test experiments, and the aging mechanism of batteries was analyzed by using differential voltage method. A battery aging prediction model was established combined with Bayesian optimization and long-short-term memory network. The influence of the change forms of the two SOC intervals and the cycle order of the SOC intervals on the rule of battery capacity decline was analyzed according to the experimental results of the battery in different variable SOC cycle intervals. Results show that when the SOC cycle interval remains unchanged, the wider the SOC cycle interval is, the faster the aging speed of the battery is. The cyclable lithium-ion loss is the main cause of battery aging, and the established capacity decline prediction model has high accuracy. The aging law of the battery will significantly change in the short term after the SOC cycle interval changes. When the battery ages in different SOC cycle interval sequences, even if the two intervals experience the same number of cycles, the aging degree of the battery is not the same.

Key words: nickel-cobalt-aluminum lithium-ion battery    cyclic aging    SOC interval form    aging model    aging mechanism
收稿日期: 2022-11-15 出版日期: 2023-04-21
CLC:  TM 911  
基金资助: 浙江省自然科学基金资助项目(LQ20E060008);能源清洁利用国家重点实验室开放基金资助项目(ZJUCEU2022016)
通讯作者: 黄瑞     E-mail: qwzhu@zju.edu.cn;hrss@zju.edu.cn
作者简介: 祝庆伟(1998—),男,硕士生,从事电池老化的研究. orcid.org/0000-0001-9173-7339. E-mail: qwzhu@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
祝庆伟
吴启超
徐一丹
俞小莉
黄瑞

引用本文:

祝庆伟,吴启超,徐一丹,俞小莉,黄瑞. 镍钴铝锂离子电池在不同SOC区间的老化[J]. 浙江大学学报(工学版), 2023, 57(4): 666-674.

Qing-wei ZHU,Qi-chao WU,Yi-dan XU,Xiao-li YU,Rui HUANG. Aging of nickel-cobalt-aluminum lithium-ion battery in different SOC intervals. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 666-674.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.04.003        https://www.zjujournals.com/eng/CN/Y2023/V57/I4/666

性能参数 数值
能量密度/(W·h·kg?1) 260.9
额定容量/(A·h) 4.9
额定电压/V 3.63
最大电流/A 充:4.9;放:9.8
充:4.2;放:2.5
截止电压/V
表 1  电池的主要性能参数
图 1  电池循环老化与性能测试的实验平台
区间宽度 区间
下限为0 上限为100%
25% (0,25%) (75%,100%)
50% (0,50%) (50%,100%)
60% (0,60%) (40%,100%)
75% (0,75%) (25%,100%)
100% (0,100%) (0,100%)
表 2  SOC循环区间不发生变化时的区间划分表
序号 循环区间1 循环区间2
1 (0,50%) (0,100%)
2 (0,50%) (50%,100%)
3 (50%,100%) (0,100%)
4 (50%,100%) (0,50%)
5 (0,100%) (50%,100%)
6 (0,100%) (0,50%)
表 3  SOC循环区间会发生变化时的区间划分表
图 2  电池在单SOC循环区间上老化时的容量衰退曲线
图 3  电池在单SOC循环区间上老化时的内阻变化曲线
图 4  电池老化过程中的差分电压曲线
图 5  电池在单SOC循环区间上老化时的材料损失曲线
图 6  电池容量衰退预测模型训练结果
图 7  电池容量衰退预测模型验证结果
图 8  电池先在相同的SOC循环区间上老化时的容量曲线
图 9  电池先在不同的SOC循环区间上老化时的容量曲线
图 10  电池循环的SOC区间顺序相反时的容量曲线
1 梁海强, 何洪文, 代康伟, 等 基于大数据的电动汽车用户行为对电池老化影响分析[J]. 汽车工程, 2022, 44 (8): 1212- 1217
LIANG Hai-qiang, HE Hong-wen, DAI Kang-wei, et al Analysis on the effects of user behavior on battery aging of electric vehicles based on big data[J]. Automotive Engineering, 2022, 44 (8): 1212- 1217
2 LONG L, PAVOL B Practical capacity fading model for Li-ion battery cells in electric vehicles[J]. IEEE Transactions on Power Electronics, 2013, 28 (12): 441- 448
3 汪涛, 杨尘, 许鹏, 等 电压区间对LiFePO4/C电池循环性能衰减的影响 [J]. 电池, 2020, 50 (2): 153- 156
WANG Tao, YANG Chen, XU Peng, et al Effects of voltage range on cycle performance decay of LiFePO4/C battery [J]. Battery Bimonthly, 2020, 50 (2): 153- 156
4 张博钊, 苟斌, 徐燕璋 循环使用与储存条件对石墨/LiCoO2电池寿命的影响分析 [J]. 电气工程学报, 2022, 17 (2): 38- 48
ZHANG Bo-zhao, GOU Bin, XU Yan-zhang Effect analysis of recycling and storage conditions on graphite/LiCoO2 battery life [J]. Journal of Electrical Engineering, 2022, 17 (2): 38- 48
5 庞轶, 尚丽平, 屈薇薇 不同SOC区间及倍率下锂电池老化分析[J]. 电子元件与材料, 2022, 41 (2): 143- 148
PANG Yi, SHANG Li-ping, QU Wei-wei Aging analysis of lithium battery under different SOC range and discharge rate[J]. Electronic Components and Materials, 2022, 41 (2): 143- 148
6 GAO Y, JIANG J C, ZHANG C P, et al Aging mechanisms under different state-of-charge ranges and the multi-indicators system of state-of-health for lithium-ion battery with Li(NiMnCo)O2 cathode [J]. Journal of Power Sources, 2018, 400: 641- 651
doi: 10.1016/j.jpowsour.2018.07.018
7 徐成善, 卢兰光, 任东生, 等 车用锂离子电池放电区间与容量衰减关系的研究[J]. 汽车工程, 2017, 39 (10): 1141- 1144
XU Cheng-shan, LU Lan-guang, REN Dong-sheng, et al A study on the relationship between capacity fade and discharge intervals of a vehicular lithium-ion battery[J]. Automotive Engineering, 2017, 39 (10): 1141- 1144
8 SHOICHIRO W, MASAHIRO K, KENSUKE N Capacity fade of LiNi1−x−yCoxAlyO2 cathode for lithium ion batteries during accelerated calendar and cycle life tests (effect of depth of discharge in charge-discharge cycling on the suppression of the micro-crack generation of LiAlyNi1−x−yCoxO2 particle) [J]. Journal of Power Sources, 2014, 260: 50- 56
doi: 10.1016/j.jpowsour.2014.02.103
9 PARK K J, HWANG J Y, RYU H H, et al Degradation mechanism of Ni-enriched NCA cathode for lithium batteries: are microcracks really critical?[J]. ACS Energy Letters, 2019, 4 (6): 1394- 1400
doi: 10.1021/acsenergylett.9b00733
10 SAURABH S, CHRISTOPHER H, MICHAEL P Cycle life testing and modeling of graphite/LiCoO2 cells under different state of charge ranges [J]. Journal of Power Sources, 2016, 327: 394- 440
doi: 10.1016/j.jpowsour.2016.07.057
11 CUI Y Z, DU C Y, YIN G P, et al Multi-stress factor model for cycle lifetime prediction of lithium ion batteries with shallow-depth discharge[J]. Journal of Power Sources, 2015, 279: 123- 132
doi: 10.1016/j.jpowsour.2015.01.003
12 高洋. 三元材料锂离子电池老化诊断、评估与建模方法[D]. 北京: 北京交通大学, 2019.
GAO Yang. Aging diagnosis, evaluation and modeling of lithium ion batteries with Li(NiMnCo)O2 cathode [D]. Beijing: Beijing Jiaotong University, 2019.
13 杨胜杰, 罗冰洋, 王菁, 等 基于容量增量曲线峰值区间特征参数的锂离子电池健康状态估算[J]. 电工技术学报, 2021, 36 (11): 2277- 2287
YANG Sheng-jie, LUO Bing-yang, WANG Jing, et al State of health estimation for lithium-ion batteries based on peak region feature parameters of incremental capacity curve[J]. Transactions of China Electrotechnical Society, 2021, 36 (11): 2277- 2287
14 孙丙香, 任鹏博, 陈育哲, 等 锂离子电池在不同区间下的衰退影响因素分析及任意区间的老化趋势预测[J]. 电工技术学报, 2021, 36 (3): 666- 674
SUN Bing-xiang, REN Peng-bo, CHEN Yu-zhe, et al Analysis of influencing factors of degradation under different interval stress and prediction of aging trend in any interval for lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2021, 36 (3): 666- 674
[1] 姜孝男,徐刚,陈卫祥. Z-CoS2-MoS2/rGO的合成及电化学储锂性能[J]. 浙江大学学报(工学版), 2022, 56(1): 152-160.
[2] 王帅林,盛雷,齐丽娜,方奕栋,李康,苏林. 大型软包锂离子电池的热物性实验研究[J]. 浙江大学学报(工学版), 2021, 55(10): 1986-1992.
[3] 任王瑜,侯世成,姜孝男,陈卫祥. MoS2/硼掺杂石墨烯的电化学析氢和储锂性能[J]. 浙江大学学报(工学版), 2020, 54(8): 1628-1636.
[4] 朱清,任王瑜,姜孝男,陈卫祥. Bi2S3-MoS2/石墨烯复合材料的合成及电化学储锂性能[J]. 浙江大学学报(工学版), 2019, 53(7): 1306-1314.
[5] 王世学,齐贺. 加湿温度对燃料电池性能影响的实验研究[J]. 浙江大学学报(工学版), 2015, 49(11): 2193-2197.
[6] 丁家峰, 罗安, 胡志坤, 王会海, 曹建. 固体氧化物燃料电池的气体检测特性[J]. J4, 2012, 46(6): 1008-1013.
[7] 李辉,李赫,常焜,陈卫祥. Sn/C纳米复合材料的合成及其电化学嵌放锂性能[J]. J4, 2011, 45(5): 919-922.
[8] 马琳,肖玉凤,赵杰,陈卫祥. 中空Pd/C催化剂的合成及其对甲酸氧化电催化性能[J]. J4, 2011, 45(5): 923-927.
[9] 马琳, 李辉, 常焜, 李赫, 陈卫祥. 水热合成纳米片状SnS2及其电化学贮放锂性能[J]. J4, 2011, 45(2): 354-357.
[10] 管成, 王向炜, 王冬云. 混合动力挖掘机用镍氢电池SOC估算策略[J]. J4, 2010, 44(12): 2370-2375.