Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (10): 1986-1992    DOI: 10.3785/j.issn.1008-973X.2021.10.021
电气工程     
大型软包锂离子电池的热物性实验研究
王帅林1(),盛雷1,2,齐丽娜3,方奕栋1,李康1,苏林1,*()
1. 上海理工大学 能源与动力工程学院,上海 200093
2. 上海理工大学 机械工程学院,上海 200093
3. 兰考县第三高级中学物理组,河南 开封 475300
Experimental investigation on thermophysical parameters of large-format pouch lithium-ion battery
Shuai-lin WANG1(),Lei SHENG1,2,Li-na QI3,Yi-dong FANG1,Kang LI1,Lin SU1,*()
1. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
3. Physics Teachers’ Office, The Third Senior High School of Lankao, Kaifeng 475300, China
 全文: PDF(1160 KB)   HTML
摘要:

针对大型软包锂离子电池热物性参数的测定问题,提出适用于该型电池的热参数表征方法. 基于准稳态导热原理,建立电池的传热理论模型. 开展实验研究电池的比定压热容和导热系数与温度的依变关系,分析热损对测试结果的影响,对测试方法的有效性进行验证. 结果表明,电池比定压热容随着温度的升高而线性增大,导热系数受温度的影响较小. 在900 s内可以测得电池热参数在10~60 °C下的变化状况,实验验证结果显示测算精度高于92.3%,具有测算周期短、准确度高和测试灵活等优势.

关键词: 大型软包锂离子电池比定压热容导热系数准稳态导热原理    
Abstract:

A thermal parameter characterization method suitable for this battery was proposed aiming at the problem of the thermophysical parameters determination for large-format pouch lithium-ion battery cell. A theoretical model of heat transfer of the battery was established based on the principle of quasi-steady-state heat conduction. Experiments were conducted to analyze the dependence of the specific heat capacity at constant pressure and thermal conductivity of the battery on the temperature. The influence of heat loss on the test results was analyzed, and the validity of the test method was verified. Results show that the cell specific heat increases linearly as the increasing temperature, and the temperature has a minor effect on the cell thermal conductivity. The thermal parameters in the temperature range of 10~60 °C for the cell can be measured within 900 s. The experimental results show that the test precise overtops 92.3%, which has the advantages of short measurement cycle, high accuracy and flexible testing.

Key words: large-scale pouch lithium-ion battery    specific heat capacity at constant pressure    thermal conductivity    quasi-steady-state heat conduction principle
收稿日期: 2020-12-09 出版日期: 2021-10-27
CLC:  TM 911  
通讯作者: 苏林     E-mail: mo12134@163.com;linsu@usst.edu.cn
作者简介: 王帅林(1995—),男,硕士生,从事汽车热管理的研究. orcid.org/0000-0003-4108-7539. E-mail: mo12134@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王帅林
盛雷
齐丽娜
方奕栋
李康
苏林

引用本文:

王帅林,盛雷,齐丽娜,方奕栋,李康,苏林. 大型软包锂离子电池的热物性实验研究[J]. 浙江大学学报(工学版), 2021, 55(10): 1986-1992.

Shuai-lin WANG,Lei SHENG,Li-na QI,Yi-dong FANG,Kang LI,Lin SU. Experimental investigation on thermophysical parameters of large-format pouch lithium-ion battery. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1986-1992.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.10.021        https://www.zjujournals.com/eng/CN/Y2021/V55/I10/1986

图 1  电池受热分析图
参数 数值
尺寸(长×宽×高)/mm 300×100×11.2
质量/g 781.50
标称容量/(A·h) 55
标称电压/V 3.6
放电截止电压/V 2.8
充电截止电压/V 4.2
工作温度/°C 充电 0~45,放电 ?20~60
表 1  软包三元锂离子电池的规格参数
图 2  热物性参数测试实验装置及热电偶布置图
装置 型号/材质 精度
保温盒 EPE珍珠棉(700×300×180 mm3 ?
恒温箱 HS-250 L ±0.5 oC
稳压电源 DC 30 V10 A 0.001 A,0.01 V
薄膜加热器 厚0.22 mm 1%
热电偶 T型 0.4%
热流计 LR8432(53.5 mm×10 mm×0.28 mm) 2%
表 2  热物性参数测试实验设备及测量装置规格表
图 3  电池温变及热流损失密度曲线图
图 4  电池冷、热面间温差及平均温变率
图 5  比定压热容与温度间的曲线关系
图 6  导热系数随温度的变化曲线图
图 7  有机玻璃实物图(敷有加热膜)
热物性参数 cp /(J ·kg?1·K?1 κx /(W·m?1·K?1
参考值 1464 0.180
测量值 1351 0.175
表 3  有机玻璃热参数测试误差分析
1 LU D, LIN S, HU S, et al Thermal behavior and failure mechanism of large format lithium-ion battery[J]. Journal of Solid State Electrochemistry, 2020, 25 (1): 315- 325
doi: 10.1007/s10008-020-04810-z
2 GOMEZ J, NELSON R, KALU E E, et al Corrigendum to “equivalent circuit model parameters of a high-power Li-ion battery: thermal and state of charge effects”[J]. Power Sources, 2011, 196 (10): 4826- 4831
doi: 10.1016/j.jpowsour.2010.12.107
3 WANG H C, SHENG L, GHULAM Y, et al Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries[J]. Energy Storage Materials, 2020, 33: 188- 215
doi: 10.1016/j.ensm.2020.08.014
4 程夕明, 唐宇, 王寿群 锂离子电池热物性参数测量方法综述[J]. 机械工程学报, 2019, 55 (14): 140- 150
CHENG Xi-ming, TANG Yu, WANG Shou-qun Overview of measurement methods for thermal properties of lithium-ion batteries[J]. Chinese Journal of Mechanical Engineering, 2019, 55 (14): 140- 150
doi: 10.3901/JME.2019.14.140
5 LOGES A, HERBERGER S, WERNER D, et al Thermal characterization of Li-ion cell electrodes by photothermal deflection spectroscopy[J]. Journal of Power Sources, 2016, 325 (9): 104- 115
6 YANG X L, HU X B, CHEN Z, et al Effect of ambient dissipation condition on thermal behavior of a lithium-ion battery using a 3D multi-partition model[J]. Applied Thermal Engineering, 2020, 178 (1): 10- 21
7 辛乃龙. 纯电动汽车锂离子动力电池组热特性分析及仿真研究[D]. 吉林: 吉林大学, 2012.
XIN Nai-long. Thermal characteristics analysis and simulation study of lithium-ion power battery pack for pure electric vehicles [D]. Jilin: Jilin University, 2012.
8 崔喜风, 张红亮, 龚阳, 等 方形硬壳锂离子动力电池的热物性参数[J]. 中国有色金属学报, 2019, 29 (12): 2747- 2756
CUI Xi-feng, ZHANG Hong-liang, GONG Yang, et al Thermal properties of square hard-shell lithium-ion power batteries[J]. The Chinese Journal of Nonferrous Metals, 2019, 29 (12): 2747- 2756
9 VERTIZ G, OYARBIDE M, MACICIOR H, et al Thermal characterization of large size lithium-ion pouch cell based on 1d electro-thermal model[J]. Journal of Power Sources, 2014, 272 (12): 476- 484
10 BAZINSKI S J, WANG X Experimental study on the influence of temperature and state-of-charge on the thermophysical properties of an LFP pouch cell[J]. Journal of Power Sources, 2015, 293: 283- 291
doi: 10.1016/j.jpowsour.2015.05.084
11 DRAKE S J, WETZ D A, OSTANEK J K, et al Measurement of anisotropic thermophysical properties of cylindrical Li-ion cells[J]. Journal of Power Sources, 2014, 252: 298- 304
doi: 10.1016/j.jpowsour.2013.11.107
12 NEIL S, KATHERINE M, RYAN M, et al Novel 18650 lithium-ion battery surrogate cell design with anisotropic thermophysical properties for studying failure events[J]. Journal of Power Sources, 2016, 312: 1- 11
doi: 10.1016/j.jpowsour.2016.01.107
13 盛雷, 徐海峰, 苏林, 等 车用磷酸亚铁锂电池的热特性与热物性研究[J]. 汽车工程, 2019, 41 (10): 1152- 1157
SHENG Lei, XU Hai-feng, SU Lin, et al Research on thermal characteristics and thermophysical properties of lithium iron phosphate batteries for vehicles[J]. Automotive Engineering, 2019, 41 (10): 1152- 1157
14 FORGEZ C, DO D V, FRIEDRICH G, et al Thermal modeling of a cylindrical LiFePO4 /graphite lithium-ion battery [J]. Journal of Power Sources, 2010, 195 (9): 2961- 2968
doi: 10.1016/j.jpowsour.2009.10.105
15 SHENG L, SU L, ZHANG H Y, et al An improved calorimetric method for characterizations of the specific heat and the heat generation rate in a prismatic lithium ion battery cell[J]. Energy Conversion and Management, 2019, 180 (2): 724- 732
16 SHENG L, SU L, ZHANG H Y, et al Experimental determination on thermal parameters of prismatic lithium-ion battery cells[J]. International Journal of Heat and Mass Transfer, 2019, 139 (16): 231- 239
17 吴青余, 张恒运, 李俊伟 校准量热法测量锂电池比定压热容和生热率[J]. 汽车工程, 2020, 42 (1): 59- 65
WU Qing-yu, ZHANG Heng-yun, LI Jun-wei Calibration calorimetry to measure the specific heat capacity and heat generation rate of lithium batteries[J]. Automotive Engineering, 2020, 42 (1): 59- 65
18 ZHANG J B, WU B, LI Z, et al Simultaneous estimation of thermal parameters for large-format laminated lithium-ion batteries[J]. Journal of Power Sources, 2014, 259 (12): 106- 116
19 ZHANG X, REINHARDT K, ANANTHARAMAN S Evaluation of convective heat transfer coefficient and specific heat capacity of a lithium-ion battery using infrared camera and lumped capacitance method[J]. Journal of Power Sources, 2019, 412 (2): 552- 558
20 卢建航, 孙宏, 尹海山 用准稳态法测定橡胶及橡胶基复合材料的导热系数和比定压热容[J]. 轮胎工业, 2001, 5 (5): 305- 309
LU Jian-hang, SUN Hong, YIN Hai-shan Determination of thermal conductivity and specific heat capacity of rubber and rubber-based composites by quasi-steady-state method[J]. Tire Industry, 2001, 5 (5): 305- 309
doi: 10.3969/j.issn.1006-8171.2001.05.012
21 黄锐. 塑料工程手册(上)[M]. 北京: 机械工程出版社, 2000: 223.
[1] 王曌文,周昊,罗佳伟,伍其威,岑可法. 储罐地基材料在熔盐泄露后的导热系数研究[J]. 浙江大学学报(工学版), 2022, 56(1): 137-143.
[2] 吕洪坤,吴宇豪,冯彦皓,汪明军,俞自涛. 直埋电缆回填土导热系数测试[J]. 浙江大学学报(工学版), 2020, 54(10): 1971-1977.
[3] 刘旋,巫江虹,鲜婷,冯业. CaCl2·6H2O/EG复合相变材料的制备与性能研究[J]. 浙江大学学报(工学版), 2019, 53(7): 1291-1297.
[4] 周昊,张昆,李亚威,张佳凯. 采用动网格技术的煤粉-玉米秸秆掺烧飞灰沉积数值模拟[J]. 浙江大学学报(工学版), 2019, 53(6): 1139-1147.
[5] 姚晓莉, 易思阳, 范利武, 徐旭, 俞自涛, 葛坚. 不同孔隙率下含湿加气混凝土的有效导热系数[J]. 浙江大学学报(工学版), 2015, 49(6): 1101-1107.
[6] 丁晴, 方昕, 范利武, 程冠华, 俞自涛, 胡亚才. 混合纳米填料对复合相变材料导热系数的影响[J]. 浙江大学学报(工学版), 2015, 49(2): 330-335.
[7] 肖玉麒,范利武,洪荣华,徐旭,俞自涛,胡亚才. 纳米填料对储能式散热器性能影响的数值研究[J]. J4, 2013, 47(9): 1644-1649.
[8] 俞亚南, 徐坚, 冯建江. 粉性土导热系数的室内实验研究[J]. J4, 2010, 44(1): 180-183.
[9] 徐旭 俞自涛 胡亚才 范利武 田甜 岑可法. 木材导热系数非线性拟合的神经网络模型[J]. J4, 2007, 41(7): 1201-1204.
[10] 俞自涛 胡亚才 田甜 范利武. 木材横纹有效导热系数的分形模型[J]. J4, 2007, 41(2): 351-355.
[11] 俞自涛 胡亚才 洪荣华 范利武 黄君丽 方梦祥 岑可法. 温度和热流方向对木材传热特性的影响[J]. J4, 2006, 40(1): 123-125.