Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (10): 1993-2001    DOI: 10.3785/j.issn.1008-973X.2021.10.022
航空航天技术     
四象限模拟太阳敏感器的高精度补偿标定方法
邓华健1,2(),王昊1,2,*(),王本冬1,2,金仲和1,2
1. 浙江大学 微小卫星研究中心,浙江 杭州 310027
2. 浙江大学 浙江省微纳卫星研究重点实验室,浙江 杭州 310027
High-precision compensation and calibration method for four-quadrant analog sun sensor
Hua-jian DENG1,2(),Hao WANG1,2,*(),Ben-dong WANG1,2,Zhong-he JIN1,2
1. Micro-Satellite Research Center, Zhejiang University, Hangzhou 310027, China
2. Key Laboratory of Micro-Nano Satellite Research, Zhejiang Province, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1493 KB)   HTML
摘要:

为了提高微纳卫星的定姿精度,针对四象限模拟太阳敏感器提出高精度误差补偿方法,设计完整的自动标定流程. 分析四象限硅光电池片光生电流的测量过程,将太阳光入射后的投影关系进行建模,提取主要误差源. 综合考虑各环节,对各路电流测量误差进行单独矫正,对机械加工与安装误差和忽略遮光罩厚度导致误差进行补偿,形成了完备的补偿方法. 实验结果表明,机械加工与安装误差为主要误差源,忽略遮光罩厚度导致误差的影响略大于电流测量误差的影响. 应用该方法在±40°视场范围内补偿前平均精度为3.072°(1σ),补偿后平均精度为0.177°(1σ),现有其他方法标定后精度为0.5°(1σ),提出方法的精度提升了约3倍. 针对标定测试工序,设计全流程自动化标定测试方法,效率明显提高,适合大批量应用.

关键词: 四象限太阳敏感器误差分析补偿标定    
Abstract:

A high-precision error compensation method was proposed for the four-quadrant analog sun sensor in order to improve the accuracy of the micro-nano satellite attitude determination system. A completely automated calibration process was designed. The process of measuring the photogenerated current of the four-quadrant silicon photocell was analyzed, and the projection relationship of the incident sunlight was modeled to extract the main error sources. All aspects of the process were considered, and the current measurement errors in each channel were separately corrected. The errors caused by machining and installation errors and the errors caused by neglecting the thickness of the optical mask were compensated, which formed a complete compensation method. The experimental results showed that machining and installation errors were the main error sources, and the influence of the error caused by neglecting the thickness of the optical mask was slightly greater than that of the current measurement error. The average accuracy before compensation was 3.072° (1σ) within ±40° of incident angle, and the average accuracy was 0.177° (1σ) after compensation. The accuracy after calibration of the existing method was 0.5°(1σ). The calibration accuracy of the proposed method was improved by about three times compared with the existing method. A set of automated calibration test method for the whole process was designed aiming at the production process of calibration test, which obviously improved the calibration efficiency and was suitable for mass application.

Key words: four-quadrant    sun sensor    error analysis    compensation    calibration
收稿日期: 2020-12-05 出版日期: 2021-10-27
CLC:  V 241  
基金资助: 国家杰出青年基金资助项目(61525403)
通讯作者: 王昊     E-mail: denghuajian@zju.edu.cn;roger@zju.edu.cn
作者简介: 邓华健(1998—),男,博士生,从事微纳卫星姿态测量的研究. orcid.org/0000-0002-6619-8553. E-mail: denghuajian@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
邓华健
王昊
王本冬
金仲和

引用本文:

邓华健,王昊,王本冬,金仲和. 四象限模拟太阳敏感器的高精度补偿标定方法[J]. 浙江大学学报(工学版), 2021, 55(10): 1993-2001.

Hua-jian DENG,Hao WANG,Ben-dong WANG,Zhong-he JIN. High-precision compensation and calibration method for four-quadrant analog sun sensor. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1993-2001.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.10.022        https://www.zjujournals.com/eng/CN/Y2021/V55/I10/1993

图 1  四象限模拟太阳敏感器测量过程示意图
图 2  模拟太阳敏感器光生电流的测量过程
图 3  电池片1响应系数对模拟太阳敏感器精度影响
图 4  太阳光从第三象限入射投影示意图(α = 25°,β = 25°)
图 5  遮光罩厚度对模拟太阳敏感器精度的影响
图 6  模拟太阳敏感器的自动标定与参数注入流程
图 7  太阳敏感器标定系统
图 8  太阳敏感器标定系统的框图
图 9  标定点和评价点的数据分布
图 10  模拟太阳敏感器的偏差角分布
补偿方法 ${{\Delta }}\bar \theta $/(°) σΔθ /(°)
完整补偿方法 0.177 0.025
忽略电流测量误差 0.215 0.034
忽略遮光罩厚度 0.350 0.065
忽略机械加工与安装误差 1.296 0.525
补偿前 3.072 0.514
表 1  模拟太阳敏感器标定后的精度评估
图 11  模拟太阳敏感器标定后的精度评估
1 WALKER A, KUMAR M. CubeSat attitude determination using low-cost sensors and magnetic field time derivative[C]// 55th AIAA Aerospace Sciences Meeting. Benevento: AIAA, 2017: 166.
2 费云, 蒙涛, 金仲和 皮纳卫星姿控系统分层式故障检测[J]. 浙江大学学报: 工学版, 2020, 54 (4): 824- 832
FEI Yun, MENG Tao, JIN Zhong-he Hierarchical fault detection for nano-pico satellite attitude control system[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (4): 824- 832
3 MAZZINI L. Flexible spacecraft dynamics, control and guidance: technologies by Giovanni Campolo [M]. Rome: Springer, 2015: 295-299.
4 ANTONELLO A, OLIVIERI L, FRANCESCONI A Development of a low-cost sun sensor for nanosatellites[J]. Acta Astronautica, 2018, 144: 429- 436
doi: 10.1016/j.actaastro.2018.01.003
5 WEI M, XING F, YOU Z A highly accurate wireless digital sun sensor based on profile detecting and detector multiplexing technologies[J]. Mechanical Systems and Signal Processing, 2017, 82: 56- 67
doi: 10.1016/j.ymssp.2016.05.004
6 ABHILASH M, KUMAR S, SANDYA S, et al. Implementation of the MEMS-based dual-axis sun sensor for nano satellites[C]// 2014 IEEE Metrology for Aerospace. Benevento: IEEE, 2014: 190-195.
7 FAN Q, PENG J, GAO X Micro digital sun sensor with linear detector[J]. Review of Scientific Instruments, 2016, 87 (7): 75003
doi: 10.1063/1.4958696
8 韩柯, 金仲和, 王昊 基于太阳能电池板的皮卫星最优姿态确定算法[J]. 浙江大学学报: 工学版, 2010, 44 (9): 1719- 1723
HAN Ke, JIN Zhong-he, WANG Hao Optimal attitude determination method for pico-satellite using solar panels[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (9): 1719- 1723
doi: 10.3785/j.issn.1008-973X.2010.09.015
9 王俊, 王昊, 应鹏, 等 四象限差动式模拟太阳敏感器设计[J]. 传感技术学报, 2012, 25 (12): 1659- 1663
WANG Jun, WANG Hao, YING Peng, et al Design of four-quadrant analog sun sensor[J]. Chinese Journal of Sensors and Actuators, 2012, 25 (12): 1659- 1663
doi: 10.3969/j.issn.1004-1699.2012.12.007
10 MIAO J, LIANG T. New kind of self-powered wireless digital sun sensor[C]// IEEE 3rd Information Technology and Mechatronics Engineering Conference. Chongqing: IEEE, 2017: 276-281.
11 KANJI S. Mechanical aspects of design, analysis, and testing for the NORSAT-1 microsatellite[D]. Toronto: University of Toronto, 2015.
12 DENG S, MENG T, WANG H, et al Flexible attitude control design and on-orbit performance of the ZDPS-2 satellite[J]. Acta Astronautica, 2017, 130: 147- 161
doi: 10.1016/j.actaastro.2016.10.020
13 DIAZ A, GARRIDO R, SOTO-BERNAL J A filtered sun sensor for solar tracking in HCPV and CSP systems[J]. IEEE Sensors Journal, 2018, 19 (3): 917- 925
14 FAN Q, ZHANG G, LI J, et al Error modeling and calibration for encoded sun sensors[J]. Sensors, 2013, 13 (3): 3217- 3231
doi: 10.3390/s130303217
15 YOUSEFIAN P, DURALI M, RASHIDIAN B, et al Fabrication, characterization, and error mitigation of non-flat sun sensor[J]. Sensors and Actuators A: Physical, 2017, 261: 243- 251
doi: 10.1016/j.sna.2017.05.022
16 冯邈, 于晓洲, 白博, 等 低成本小型无线自动太阳敏感器设计与实现[J]. 系统工程与电子技术, 2019, 41 (8): 1852- 1857
FENG Miao, YU Xiao-zhou, BAI Bo, et al Design and realization of low-cost micro wireless automatic sun sensor[J]. Systems Engineering and Electronics, 2019, 41 (8): 1852- 1857
doi: 10.3969/j.issn.1001-506X.2019.08.24
17 王春宇, 梁鹤, 吕政欣, 等 双轴模拟式太阳敏感器的误差源分析[J]. 空间控制技术与应用, 2016, 42 (1): 43- 47
WANG Chun-yu, LIANG He, LV Zheng-xin, et al Analysis of error sources existing in dual-axial analog sun sensor[J]. Aerospace Control and Application, 2016, 42 (1): 43- 47
doi: 10.3969/j.issn.1674-1579.2016.01.008
18 徐晓丹, 王建福, 种荟萱, 等 双轴模拟式太阳敏感器测试链误差分析及修正[J]. 中国空间科学技术, 2019, 39 (1): 19- 24
XU Xiao-dan, WANG Jian-fu, CHONG Hui-xuan, et al Error source analysis and compensation in test chain for dual-axial analog sun sensor[J]. Chinese Space Science and Technology, 2019, 39 (1): 19- 24
19 樊巧云, 张广军, 魏新国 内外参数精确建模的太阳敏感器标定[J]. 北京航空航天大学学报, 2011, 37 (10): 1293- 1297
FAN Qiao-yun, ZHANG Guang-jun, WEI Xin-guo Sun sensor calibration based on exact modeling with intrinsic and extrinsic parameters[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37 (10): 1293- 1297
[1] 李博群,杨家强. 用于SPMSM的自适应增量式无差拍预测电流控制算法[J]. 浙江大学学报(工学版), 2022, 56(3): 607-612.
[2] 吴剑波,李俊,郑成淦,程亮. 大型龙门铺丝机综合误差建模及补偿[J]. 浙江大学学报(工学版), 2022, 56(2): 398-407.
[3] 马浩然,丁雅斌. 基于双目视觉的激光位移传感器标定方法[J]. 浙江大学学报(工学版), 2021, 55(9): 1634-1642.
[4] 李洋,齐蓉,代明光. 补偿因子可调逆变器电压外环线性自抗扰控制[J]. 浙江大学学报(工学版), 2021, 55(7): 1279-1288.
[5] 林弘毅,郭潇,伍梁,陈国柱. 电力电子装置强风散热模型简化方法及应用[J]. 浙江大学学报(工学版), 2021, 55(6): 1159-1167.
[6] 陈原,郭登辉,田丽霞. 绳牵引刚柔式波浪补偿并联机构的设计与建模[J]. 浙江大学学报(工学版), 2021, 55(5): 810-822.
[7] 原明阳,许启跃,丁炯,叶树亮. 基于扫描升温模式的差示功率补偿绝热量热方法[J]. 浙江大学学报(工学版), 2021, 55(11): 2100-2107.
[8] 董大钊,徐冠华,高继良,徐月同,傅建中. 基于机器视觉的机器人装配位姿在线校正算法[J]. 浙江大学学报(工学版), 2021, 55(1): 145-152.
[9] 郭英杰,顾钒,董辉跃,汪海晋. 压脚压紧力作用下的机器人变形预测和补偿[J]. 浙江大学学报(工学版), 2020, 54(8): 1457-1465.
[10] 徐建明,赵智鹏,董建伟. 连杆侧无传感器下机器人柔性关节系统的零力控制[J]. 浙江大学学报(工学版), 2020, 54(7): 1256-1263.
[11] 陶正瑞,党嘉强,徐锦泱,安庆龙,陈明,王力,任斐. 曲面基体绝缘涂镀层涡流测厚高精度标定方法[J]. 浙江大学学报(工学版), 2020, 54(6): 1218-1227.
[12] 吴海同,周瑾,纪历. 基于单相坐标变换的磁悬浮转子不平衡补偿[J]. 浙江大学学报(工学版), 2020, 54(5): 963-971.
[13] 黄智,贾臻杰,邓涛,刘永超,杜丽. 基于支持向量机的静压转台热误差补偿[J]. 浙江大学学报(工学版), 2019, 53(8): 1594-1601.
[14] 李智靖,叶锦华,吴海彬. 基于卷积力矩观测器与摩擦补偿的机器人碰撞检测[J]. 浙江大学学报(工学版), 2019, 53(3): 427-434.
[15] 黄梓亮, 欧阳小平, 赵天菲, 张建波, 周亮, 杨华勇. 飞机液压含气量检测系统特性[J]. 浙江大学学报(工学版), 2019, 53(1): 158-165.