Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (10): 1978-1985    DOI: 10.3785/j.issn.1008-973X.2021.10.020
电气工程     
基于改进多新息扩展卡尔曼滤波的电池SOC估计
雷克兵(),陈自强*()
上海交通大学 海洋工程国家重点实验室,上海 200240
Estimation of state of charge of battery based on improved multi-innovation extended Kalman filter
Ke-bing LEI(),Zi-qiang CHEN*()
State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(3657 KB)   HTML
摘要:

为了提高SOC估计精度,提出基于遗忘因子改进多新息扩展卡尔曼滤波(FMIEKF)方法. 建立锂离子电池的双极化等效电路模型,开展开路电压测试. 通过递归最小二乘法,实现电池模型参数在线辨识. 提出FMIEKF进行SOC估计,该方法在融合多新息辨识理论和卡尔曼滤波基础上,引入遗忘因子削弱历史数据修正权重,解决数据过饱和问题. 通过实验和硬件在环进行验证. 结果表明,FMIEKF具有较高的准确性和收敛性,最大估计误差为0.948%,平均误差为0.214%,在不同SOC初值下20 s内收敛,可以适用于实际的电池管理系统中.

关键词: 锂离子电池多新息辨识卡尔曼滤波SOC估计硬件在环    
Abstract:

An improved multi-innovation extended Kalman filter was proposed based on the forgetting factor in order to improve the accuracy of SOC estimation. Dual-polarization equivalent circuit model of lithium-ion battery was established, and open-circuit voltage testing was conducted. Recursive least squares method was used to realize online battery model parameter identification. FMIEKF was proposed for SOC estimation based on the fusion of multi-innovation identification theory and Kalman filtering. A forgetting factor was introduced to weaken the historical data correction weight and solve the problem of data oversaturation. The method was verified through experiments and hardware-in-the-loop. The experimental results show that FMIEKF has higher accuracy and convergence. The maximum estimation error was 0.948%, the average error was 0.214%, and the FMIEKF converged within 20 seconds under different initial values of SOC. The method can be applied to the actual battery management system.

Key words: lithium-ion battery    multi-innovation recognition    Kalman filter    estimation of SOC    hardware in loop
收稿日期: 2020-11-26 出版日期: 2021-10-27
CLC:  TM 912  
基金资助: 国家自然科学基金资助项目(51677119)
通讯作者: 陈自强     E-mail: Kebing_Lei@sjtu.edu.cn;chenziqiang@sjtu.edu.cn
作者简介: 雷克兵(1995—),男,硕士生,从事储能技术的研究. orcid.org/0000-0003-2296-4399. E-mail: 864673032@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
雷克兵
陈自强

引用本文:

雷克兵,陈自强. 基于改进多新息扩展卡尔曼滤波的电池SOC估计[J]. 浙江大学学报(工学版), 2021, 55(10): 1978-1985.

Ke-bing LEI,Zi-qiang CHEN. Estimation of state of charge of battery based on improved multi-innovation extended Kalman filter. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1978-1985.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.10.020        https://www.zjujournals.com/eng/CN/Y2021/V55/I10/1978

图 1  双极化等效电路模型
阶数 RSS/10?5 R2
4阶 34.09 0.999 0
5阶 10.31 0.999 3
6阶 7.042 0.999 6
7阶 6.938 0.999 8
表 1  不同多项式的拟合结果统计
图 2  Uocv-SOC特性曲线的拟合
R0 /mΩ R1 /mΩ R2 /mΩ C1 /F C2 /F
3.89 7.548 0.453 3929 1101
表 2  100%SOC下的HPPC参数辨识结果
图 3  滑动数据窗口的示意图
图 4  FFRLS-FMIEKF联合SOC估计流程
图 5  电池充放电实验装置结构
参数 数值
电池型号 聚合物锂电池1265132
外形尺寸 厚8 mm,宽92 mm,高112 mm
净重 200 g
额定容量 10 A·h
标准电压 3.7 V
工作电压 3.0~4.2 V
持续工作电流 ≤25 A
充电电流 ≤5 A
表 3  实验电池的参数表
图 6  FFRLS参数辨识结果
图 7  SOC估计准确性的对比
估计算法 ESOC /%
最大误差 平均误差 标准差
EKF 0.985 0.267 0.405
AEKF 0.967 0.249 0.328
MIEKF 0.962 0.233 0.309
FMIEKF 0.948 0.214 0.287
表 4  不同算法的SOC估计误差统计
图 8  FMIEKF收敛结果
图 9  不同新息长度下的SOC估计结果
图 10  不同遗忘因子的SOC估计结果
图 11  硬件在环验证平台
图 12  硬件在环与实验结果的对比
%
指标 最大误差 平均误差 均方误差
实验值 0.948 0.214 0.287
HIL 1.903 0.243 0.342
表 5  改进MIEKF的HIL结果统计
1 GRUOSSO G, GAJANI G, RUIZ F, et al A virtual sensor for electric vehicles’ state of charge estimation[J]. Electronics, 2020, 9 (2): 278
doi: 10.3390/electronics9020278
2 LI Y, CHATTOPADHYAY P, XIONG S, et al Dynamic data-driven and model-based recursive analysis for estimation of battery state-of-charge[J]. Applied Energy, 2016, 184 (12): 266- 275
3 周诗尧, 陈自强, 郑昌文, 等 全海深深潜器所用动力锂离子电池电气特性[J]. 上海交通大学学报, 2019, 53 (1): 49- 54
ZHOU Shi-yao, CHEN Zi-qiang, ZHENG Chang-wen, et al Electrical characteristics of power lithium-ion batteries used in all-sea deep submersibles[J]. Journal of Shanghai Jiaotong University, 2019, 53 (1): 49- 54
4 韩雪冰. 车用锂离子电池机理模型与状态估计研究[D]. 北京: 清华大学, 2014.
HAN Xue-bing. Research on mechanism model and state estimation of lithium-ion batteries for vehicles [D]. Beijing: Tsinghua University, 2014.
5 ZHENG C, CHEN Z, HUANG D Fault diagnosis of voltage sensor and current sensor for lithium-ion battery pack using hybrid system modeling and unscented particle filter[J]. Energy, 2020, 191 (1): 116504
6 刘征宇, 杨俊斌, 张庆, 等 基于QPSO-BP神经网络的锂电池SOC预测[J]. 电子测量与仪器学报, 2013, 27 (3): 44- 48
LIU Zheng-yu, YANG Jun-bin, ZHANG Qing, et al Lithium battery SOC prediction based on QPSO-BP neural network[J]. Journal of Electronic Measurement and Instrument, 2013, 27 (3): 44- 48
7 KLASS V, BEHM M, LINDBERGH G Capturing lithium-ion battery dynamics with support vector machine-based battery model[J]. Journal of Power Sources, 2015, 298 (8): 92- 101
8 PING S, OUYANG M, LU L, et al The co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2018, 67 (1): 92- 103
doi: 10.1109/TVT.2017.2751613
9 XIONG R, GONG X, MI C C, et al A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter[J]. Journal of Power Sources, 2013, 243 (6): 805- 816
10 DUAN J, WANG P, MA W, et al State of charge estimation of lithium battery based on improved correntropy extended Kalman filter[J]. Energies, 2020, 13 (16): 4197
doi: 10.3390/en13164197
11 WASSILIADIS N, ADERMANN J, FRERICKS A, et al Revisiting the dual extended Kalman filter for battery state-of-charge and state-of-health estimation: a use-case life cycle analysis[J]. The Journal of Energy Storage, 2018, 19 (10): 73- 87
12 LI W, YANG Y, WANG D, et al The multi-innovation extended Kalman filter algorithm for battery SOC estimation[J]. Ionics, 2020, 26 (10): 1- 12
doi: 10.1007/s11581-020-03716-0
13 吴佳铭, 陈自强 可变低温环境锂电池组内部短路故障诊断[J]. 浙江大学学报:工学版, 2020, 54 (7): 1433- 1439
WU Jia-ming, CHEN Zi-qiang Fault diagnosis of internal short circuit of lithium battery pack in variable low temperature environment[J]. Journal of Zhejiang University: Engineering Science Edition, 2020, 54 (7): 1433- 1439
14 葛云龙, 陈自强, 郑昌文 UTSTF锂离子电池时变参数估计与故障诊断[J]. 浙江大学学报: 工学版, 2018, 52 (6): 1223- 1230
GE Yun-long, CHEN Zi-qiang, ZHENG Chang-wen Time-varying parameter estimation and fault diagnosis of UTSTF lithium-ion battery[J]. Journal of Zhejiang University: Engineering Science Edition, 2018, 52 (6): 1223- 1230
15 HUANG D, CHEN Z, ZHENG C, et al A model-based state-of-charge estimation method for series-connected lithium-ion battery pack considering fast-varying cell temperature[J]. Energy, 2019, 185 (C): 847- 861
[1] 王思鹏,杜昌平,宋广华,郑耀. 基于改进MSCKF的无人机室内定位方法[J]. 浙江大学学报(工学版), 2022, 56(4): 711-717.
[2] 郭承乾,马刚,梅江洲,张贵科,李宏璧,周伟. 基于InSAR与多源数据融合的堆石坝外观变形重构[J]. 浙江大学学报(工学版), 2022, 56(2): 347-355.
[3] 伍川辉,廖家,熊仕勇,牛英杰,周博. 基于激光传感器的槽型轨轮廓匹配方法[J]. 浙江大学学报(工学版), 2021, 55(9): 1607-1614.
[4] 夏雪,赵震,张晋杰,唐亮. 车用圆柱锂电池及模组的机械完整性[J]. 浙江大学学报(工学版), 2021, 55(11): 2134-2141.
[5] 王帅林,盛雷,齐丽娜,方奕栋,李康,苏林. 大型软包锂离子电池的热物性实验研究[J]. 浙江大学学报(工学版), 2021, 55(10): 1986-1992.
[6] 潘斌,董栋,钱东培,钮树强,刘双宇,姜银珠. 磷酸铁锂电池内阻分量快速检测方法[J]. 浙江大学学报(工学版), 2021, 55(1): 189-194.
[7] 朱清,任王瑜,姜孝男,陈卫祥. Bi2S3-MoS2/石墨烯复合材料的合成及电化学储锂性能[J]. 浙江大学学报(工学版), 2019, 53(7): 1306-1314.
[8] 黄钰期,梅盼,陈晓济,邓长水. 基于CFD分析的电动汽车电池包加热方法[J]. 浙江大学学报(工学版), 2019, 53(2): 207-213.
[9] 葛云龙, 陈自强, 郑昌文. UTSTF锂离子电池时变参数估计与故障诊断[J]. 浙江大学学报(工学版), 2018, 52(6): 1223-1230.
[10] 刘景明, 黄平捷, 侯迪波, 张光新, 张宏建. 河流突发污染的污染物浓度动态校正方法[J]. 浙江大学学报(工学版), 2017, 51(12): 2459-2465.
[11] 叶肖伟, 刘坦, 董传智, 陈斌. 基于卡尔曼滤波和中性轴位置的结构损伤识别[J]. 浙江大学学报(工学版), 2017, 51(10): 2012-2018.
[12] 宋开臣,曾瑶,叶凌云. 基于多传感器信息融合的涡街信号处理方法[J]. 浙江大学学报(工学版), 2016, 50(7): 1307-1312.
[13] 刘刚, 靳立强, 王熠. 乘用车稳定性自抗扰控制策略[J]. 浙江大学学报(工学版), 2016, 50(12): 2289-2296.
[14] 莫元富, 于德新, 宋军, 郭亚娟. 基于信道负载阈值的车联网信标消息生成策略[J]. 浙江大学学报(工学版), 2016, 50(1): 21-26.
[15] 朱光明, 蒋荣欣, 周凡, 田翔, 陈耀武. 带测量偏置估计的鲁棒卡尔曼滤波算法[J]. 浙江大学学报(工学版), 2015, 49(7): 1343-1349.