Please wait a minute...
浙江大学学报(理学版)  2023, Vol. 50 Issue (6): 711-721    DOI: 10.3785/j.issn.1008-9497.2023.06.006
第26届全国计算机辅助设计与图形学学术会议专题     
动脉粥样硬化斑块生成的高效流固耦合不可压缩SPH模拟方法
汪飞1,李伟鸿1,杨彧2,姜大志1,赵宝全3(),罗笑南4
1.汕头大学 工学院 计算机系,广东 汕头 515063
2.深圳证券信息有限公司,广东 深圳 518000
3.中山大学 人工智能学院,广东 珠海 519000
4.桂林电子科技大学 计算机与信息安全学院,广西 桂林 541004
Highly efficient fluid-solid coupled incompressible SPH simulation method for atherosclerotic plaque generation
Fei WANG1,Weihong LI1,Yu YANG2,Dazhi JIANG1,Baoquan ZHAO3(),Xiaonan LUO4
1.Department of Computer Science,Shantou University,Shantou 515063,Guangdong Province,China
2.Shenzhen Securities Information Co. ,Ltd. ,Shenzhen 518000,Guangdong Province,China
3.School of Artificial Intelligence,Sun Yat-Sen Universit,Zhuhai 519000,Guangdong Province,China
4.School of Computer Science and Information Security,Guilin University of Electronic Technology,Guilin 541004,Guangxi Zhuang Autonomous Region,China
 全文: PDF(4046 KB)   HTML( 1 )
摘要:

动脉粥样硬化是导致心血管疾病和中风的关键诱因,对该病变过程进行模拟与可视化有助于开展医学研究。为解决现有模拟方法不能可视化动脉粥样硬化斑块生成过程以及模拟速度过慢问题,提出了一种基于高效流固耦合不可压缩光滑粒子流体动力学(smoothed particle hydrodynamics,SPH)的斑块生成模拟方法。首先,基于流固耦合不可压缩SPH方法,将血液离散为不可压缩流体粒子,以控制血液流动的稳定性;然后,使用斑块生成模型对血液、单核细胞等粒子建模,对血液成分进行病理性分析,控制斑块生成;最后,通过流固耦合作用计算血液与斑块的物理特性,模拟斑块堵塞血流过程。为使模拟结果能够实时呈现,用统一计算设备架构(compute unified device architecture,CUDA)实现并行加速计算。方法实现了对血液中斑块生成的快速模拟,避免了用偏微分方程模型模拟带来的高计算量;同时能较真实地模拟斑块生成过程并体现血液与斑块的流固耦合作用;最后逼真展现了斑块模拟的渲染结果。

关键词: 光滑粒子流体动力学动脉粥样硬化斑块生成模拟血液模拟流固耦合    
Abstract:

Atherosclerosis is a critical cause of cardiovascular disease and stroke. Simulating and visualizing this process is crucial to relevant medical research. To tackle the problems of existing methods regarding the difficulties on realistic simulation and low efficiency, we propose a novel and highly efficient atherosclerotic plaque simulation solution based on a fluid-solid coupled incompressible smoothed particle hydrodynamics (SPH) method. Firstly, we discretize the blood into incompressible fluid particles using fluid-solid coupled in compressible SPH to control the stability of blood. Then, we adopt the plaque generation model to model blood, monocytes and other particles to control plaque generation based on pathological analysis of blood composition. Finally, we compute the physical properties of blood and plaque by coupling fluid-solid particles to simulate the plaque clogging effect. To make the simulation as in real-time as possible, parallel accelerated computation is implemented in CUDA architecture. Several realistic renderings of plaque simulations are provided.The results show that our method can achieves fast simulation of plaque generation in blood while avoiding the high computational cost associated with the partial differential equation model for plaque generation.

Key words: smoothed particle hydrodynamics (SPH)    atherosclerosis simulation    plaque generation    blood simulation    fluid-solid coupled
收稿日期: 2023-06-12 出版日期: 2023-11-30
CLC:  TP 391  
基金资助: 广东省基础与应用基础研究基金项目(2022A1515011978);广东省普通高校重点领域专项项目(2022ZDZX1007);广东省科技创新战略专项(“大专项+任务清单”)项目(STKJ202209003)
通讯作者: 赵宝全     E-mail: zhaobaoquan@mail.sysu.edu.cn
作者简介: 汪飞(1987—),ORCID:https://orcid.org/0000-0001-8949-1894,男,博士,主要从事计算机图形学研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
汪飞
李伟鸿
杨彧
姜大志
赵宝全
罗笑南

引用本文:

汪飞,李伟鸿,杨彧,姜大志,赵宝全,罗笑南. 动脉粥样硬化斑块生成的高效流固耦合不可压缩SPH模拟方法[J]. 浙江大学学报(理学版), 2023, 50(6): 711-721.

Fei WANG,Weihong LI,Yu YANG,Dazhi JIANG,Baoquan ZHAO,Xiaonan LUO. Highly efficient fluid-solid coupled incompressible SPH simulation method for atherosclerotic plaque generation. Journal of Zhejiang University (Science Edition), 2023, 50(6): 711-721.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2023.06.006        https://www.zjujournals.com/sci/CN/Y2023/V50/I6/711

图1  单核细胞向巨噬细胞的转化过程[26]
图2  凝血酶刺激ICAM-1表达
图3  单核细胞募集吸引力分析
图4  粒子转换处理
参数取值单位描述
h0.025m光滑核半径
ρ1 050.0kg·m-3血液密度
m0.000 2kg血液粒子质量
V010-16m3斑块形成临界体积
Vm10-17m3单核细胞体积
VM10-14m3巨噬细胞体积
VF10-13m3泡沫细胞体积
P0120mmHg血管初始血压
E024.5kPa内皮层初始杨氏模量
α3.5N·m-3流体粒子黏性常数
σ2N·m-3流固粒子黏滞系数
表1  动脉粥样硬化斑块形成模拟实验参数
图5  血液模拟效果
图6  斑块可视化生长过程
图7  斑块的渲染效果
图8  不同V0对斑块形成速度的影响
图9  在平面血流中斑块的生成
图10  3 000~15 000帧的血流速度及血流量变化
实验粒子数FPS/(帧·s-1
CPUCUDA
平直血管26 7162.2199.9
弯曲血管20 1282.9227.7
平面血流16 4963.5260.9
表2  模拟效率
测试条件粒子数斑块FPS/(帧·s-1
CPUCUDA
TC122 0842.9216.7
TC226 7162.2200.7
TC326 716×2.2202.6
TC431 3481.7196.5
表3  4组测试条件下的模拟效率
1 SONG P, FANG Z, WANG H, et al. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: A systematic review, meta-analysis, and modelling study[J]. The Lancet Global Health, 2020, 8(5): e721-e729. DOI:10.1016/s2214-109x(20)30117-0
doi: 10.1016/s2214-109x(20)30117-0
2 KE G, HANS C, AGARWAL G, et al. Mathematical model of atherosclerotic aneurysm[J]. Mathematical Biosciences and Engineering, 2021, 18(2): 1465-1484. DOI:10.3934/mbe.2021076
doi: 10.3934/mbe.2021076
3 ZOHDI T I, HOLZAPFEL G A, BERGER S A. A phenomenological model for atherosclerotic plaque growth and rupture[J]. Journal of Theoretical Biology, 2004, 227(3): 437-43. DOI:10.1016/j.jtbi.2003.11.025
doi: 10.1016/j.jtbi.2003.11.025
4 TANG D, YANG C, ZHENG J, et al. 3D MRI-based multicomponent FSI models for atherosclerotic plaques[J]. Annals of Biomedical Engineering, 2004, 32(7): 947-960. DOI:10.1023/b:abme.0000032457.10191.e0
doi: 10.1023/b:abme.0000032457.10191.e0
5 MONAGHAN J J. Smoothed particle hydrodynamics[J]. Reports on Progress in Physics, 2005, 68(8): 1703-1759. DOI:10.1088/0034-4885/68/8/R01
doi: 10.1088/0034-4885/68/8/R01
6 MÜLLER M, SCHIRM S, TESCHNER M. Interactive blood simulation for virtual surgery based on smoothed particle hydrodynamics[J]. Technology and Health Care, 2004, 12(1): 25-31. DOI:10.3233/thc-2004-12103
doi: 10.3233/thc-2004-12103
7 AL-SAAD M, SUAREZ C A, OBEIDAT A, et al. Application of smooth particle hydrodynamics method for modelling blood flow with thrombus formation[J]. Computer Modeling in Engineering & Sciences, 2020, 122(3): 831-862. DOI:10.32604/cmes.2020. 08527
doi: 10.32604/cmes.2020. 08527
8 陈旭游, 王若梅, 林淑金, 等. 基于Gillespie方法的血栓生成模拟方法[J]. 计算机辅助设计与图形学学报, 2019, 31(8):1301-1311. DOI:10.3724/SP.J.1089.2019.17570
CHEN X Y, WANG R M, LIN S J, et al. Thrombus clotting simulation method based on the Gillespie method[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(8): 1301-1311. DOI:10.3724/SP.J.1089.2019.17570
doi: 10.3724/SP.J.1089.2019.17570
9 WANG F, XU S, JIANG D, et al. Particle hydrodynamic simulation of thrombus formation using velocity decay factor[J]. Computer Methods and Programs in Biomedicine, 2021, 207: 106173. DOI:10.1016/j.cmpb.2021.106173
doi: 10.1016/j.cmpb.2021.106173
10 WANG F, LIN S, LUO X, et al. Coupling computation of density-invariant and divergence-free for improving incompressible SPH efficiency[J]. IEEE Access, 2020, 8: 135912-135919. DOI:10.1109/access.2018.2872420
doi: 10.1109/access.2018.2872420
11 MÜLLER M, CHARYPAR D, GROSS M. Particle-based fluid simulation for interactive applications[C]// Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville: Eurographics Association Press, 2003: 154-159.
12 MACKLIN M, MÜLLER M. Position based fluids[J]. ACM Transactions on Graphics, 2013, 32(4): 1-12. DOI:10.1145/2461912.2461984
doi: 10.1145/2461912.2461984
13 BECKER M, TESCHNER M. Weakly compressible SPH for free surface flows[C]// Proceedings of the ACM SIGGRAPH/ Eurographics Symposium on Computer Animation. Aire-la-Ville: Eurographics Association Press, 2007: 209-217.
14 SOLENTHALER B, PAJAROLA R. Predictive-corrective incompressible SPH[J]. ACM Transactions on Graphics, 2009, 28(3): 40. DOI:10.1145/1531326.1531346
doi: 10.1145/1531326.1531346
15 IHMSEN M, CORNELIS J, SOLENTHALER B, et al. Implicit incompressible SPH[J]. IEEE Transactions Visualization and Computer Graphics, 2014, 20(3): 426-435. DOI:10.1109/tvcg.2013.105
doi: 10.1109/tvcg.2013.105
16 BENDER J, KOSCHIER D. Divergence-free SPH for incompressible and viscous fluids[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(3): 1193-1206. DOI:10.1109/tvcg.2016.2578335
doi: 10.1109/tvcg.2016.2578335
17 陈国栋, 党琪琪, 叶东文. 基于SPH及形状约束的血流实时仿真[J]. 中国医疗设备, 2015, 30(6): 23-27. doi:10.3969/j.issn.1674-1633.2015.06.005
CHEN G D, DANG Q Q, YE D W. Real-time simulation of blood flow based on SPH and shape constrain[J]. China Medical Devices, 2015, 30(6): 23-27. doi:10.3969/j.issn.1674-1633.2015.06.005
doi: 10.3969/j.issn.1674-1633.2015.06.005
18 MUKHERJEE D, GUIN L N, CHAKRAVARTY S. A reaction-diffusion mathematical model on mild atherosclerosis[J]. Modeling Earth Systems and Environment, 2019, 5: 1853-1865. DOI:10.1007/s40808-019-00643-6
doi: 10.1007/s40808-019-00643-6
19 KHATIB N E, GÉNIEYS S, VOLPERT V. Atherosclerosis initiation modeled as an inflammatory process[J]. Mathematical Modelling of Natural Phenomena, 2007, 2(2): 126-141. DOI:10.1051/mmnp:2008022
doi: 10.1051/mmnp:2008022
20 NAVIER C. Mémoire sur les lois du mouvement des fluides[J]. Mémoires de l'Académie Royale des Sciences de l'Institut de France, 1823, 6: 389-440.
21 PELISSIER M A, VAN DE COEVERING N. Classics of Elastic Wave Theory[M]. Tulsa: Society of Exploration Geophysicists, 2007. DOI:10.1190/1.9781560801931.ch3e
doi: 10.1190/1.9781560801931.ch3e
22 LAGRANGE J L. Mécanique Analytique[M]. Paris: Mallet-Bachelier, 1853.
23 KAPLANSKI G, MARIN V, FABRIGOULE M, et al. Thrombin-activated human endothelial cells support monocyte adhesion in vitro following expression of intercellular adhesion molecule-1 (ICAM-1; CD54) and vascular cell adhesion molecule-1 (VCAM-1; CD106)[J]. Blood, 1998, 92(4): 1259-1267. DOI:10.1182/blood.v92.4.1259
doi: 10.1182/blood.v92.4.1259
24 WATANABE T, FAN J L. Atherosclerosis and inflammation mononuclear cell recruitment and adhesion molecules with reference to the implication of ICAM-1/LFA-1 pathway in atherogenesis[J]. International Journal of Cardiology, 1998, 66(): 45-53. DOI:10.1016/s0167-5273(98)00147-8
doi: 10.1016/s0167-5273(98)00147-8
25 TABAS I A, LICHTMAN A H. Monocyte-macrophages and T cells in atherosclerosis[J]. Immunity, 2017, 47(4): 621-634. DOI:10.1016/j.immuni.2017.09.008
BOBRYSHEV Y V. Monocyte recruitment and foam cell formation in atherosclerosis[J]. Micron, 2006, 37(3): 208-222. DOI:10.1016/j.micron.2005.10.007
doi: 10.1016/j.micron.2005.10.007
26 KALZ J, CATE H T, SPRONK H M. Thrombin generation and atherosclerosis[J]. Journal of Thrombosis and Thrombolysis, 2013, 37: 45-55. DOI:10.1007/s11239-013-1026-5
doi: 10.1007/s11239-013-1026-5
27 BOBRYSHEV Y V. Monocyte recruitment and foam cell formation in atherosclerosis[J]. Micron, 2006, 37(3): 208-222. DOI:10.1016/j.micron.2005.10.007
doi: 10.1016/j.micron.2005.10.007
28 BANERJEE M K, GANGULY R, DATTA A. Variation of wall shear stress and flow characteristics across cosine shaped stenotic model with flow reynolds number and degree of stenosis[J]. International Journal of Fluid Mechanics Research, 2010, 37(6): 530-552. DOI:10.1615/InterJFluidMechRes.v37.i6.30
doi: 10.1615/InterJFluidMechRes.v37.i6.30
29 ISLAM M H, JOHNSTON P R. A mathematical model for atherosclerotic plaque formation and arterial wall remodelling[J]. Anziam Journal, 2016, 57: 320-345. DOI:10.21914/anziamj.v57i0.10386
doi: 10.21914/anziamj.v57i0.10386
30 REZVANI-SHARIF A, TAFAZZOLI-SHADPOUR M, AVOLIO A. Progressive changes of elastic moduli of arterial wall and atherosclerotic plaque components during plaque development in human coronary arteries[J]. Medical & Biological Engineering & Computing, 2018, 57(3): 731-740. DOI:10.1007/s11517-018-1910-4
doi: 10.1007/s11517-018-1910-4
31 AKINCI N, IHMSEN M, AKINCI G, et al. Versatile rigid-fluid coupling for incompressible SPH[J]. ACM Transactions on Graphics (TOG), 2012, 31(4): 1-8. DOI:10.1145/2185520.2185558
doi: 10.1145/2185520.2185558
32 GERRITY R G. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions[J]. American Journal of Pathology, 1981, 103(2): 181-190.
[1] 张泽初,彭伟龙,唐可可,余朝阳,Khan Asad,方美娥. 面向CBCT图像的金字塔微分同胚变形牙齿网格重建方法[J]. 浙江大学学报(理学版), 2023, 50(6): 701-710.
[2] 毛涵杨,彭晨,李晨,王长波. 面向开放表面的神经移动立方体算法[J]. 浙江大学学报(理学版), 2023, 50(6): 692-700.
[3] 苏科华,刘百略,雷娜,李可涵,顾险峰. 基于最优质量传输的Focus+Context可视化[J]. 浙江大学学报(理学版), 2023, 50(6): 681-691.
[4] 刘圣军,滕子,王海波,刘新儒. 基于函数映射的二维形状内蕴对称检测算法[J]. 浙江大学学报(理学版), 2023, 50(6): 668-680.
[5] 刘泽润,尹宇飞,薛文灏,郭蕊,程乐超. 基于扩散模型的条件引导图像生成综述[J]. 浙江大学学报(理学版), 2023, 50(6): 651-667.
[6] 谭晓东,赵奇,文明珠,王小超. 基于BEMD、DCT和SVD的混合图像水印算法[J]. 浙江大学学报(理学版), 2023, 50(4): 442-454.
[7] 方于华,叶枫. MFDC-Net:一种融合多尺度特征和注意力机制的乳腺癌病理图像分类算法[J]. 浙江大学学报(理学版), 2023, 50(4): 455-464.
[8] 孔翔,陈军. 一类带4个形状参数的同次三角曲面构造算法[J]. 浙江大学学报(理学版), 2023, 50(2): 153-159.
[9] 张远鹏, 陈鸿韬, 王伟娜. 基于非凸非光滑变分模型的灰度图像泊松噪声移除算法[J]. 浙江大学学报(理学版), 2023, 50(2): 160-166.
[10] 李军成,刘成志,罗志军,龙志文. 空间参数曲线的双目标能量极小化方法及其应用[J]. 浙江大学学报(理学版), 2023, 50(1): 63-68.
[11] 全浩荣,刘成志,李军成,杨炼,胡丽娟. 张量积型Said-Ball曲面的预处理渐近迭代逼近法[J]. 浙江大学学报(理学版), 2022, 49(6): 682-690.
[12] 虞瑞麒,刘玉华,沈禧龙,翟如钰,张翔,周志光. 表征学习驱动的多重网络图采样[J]. 浙江大学学报(理学版), 2022, 49(3): 271-279.
[13] 律睿慜,张陶洁,席旭,王濛濛,孟磊,张克俊. 笔法与结构对楷书文字美学品质影响的量化研究[J]. 浙江大学学报(理学版), 2022, 49(3): 261-270.
[14] 钟颖,王松,吴浩,程泽鹏,李学俊. 基于SEMMA的网络安全事件可视探索[J]. 浙江大学学报(理学版), 2022, 49(2): 131-140.
[15] 祝锦泰, 叶继华, 郭凤, 江蕗, 江爱文. FSAGN: 一种自主选择关键帧的表情识别方法[J]. 浙江大学学报(理学版), 2022, 49(2): 141-150.