Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (3): 373-382    DOI: 10.3785/j.issn.1006-754X.2025.04.167
Optimization Design     
Response time optimization of high-pressure common rail giant magnetostrictive injector based on response surface method
Caofeng YU1,2(),Yikai HU1,Yongyong DUAN1,Zixian WEI1,Ning WANG1
1.School of Mechatronics Engineering, Anhui University of Science and Technology, Huainan 232001, China
2.State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(3777KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

To improve the dynamic response characteristics of high-pressure common rail injectors, a high-pressure common rail giant magnetostrictive injector was designed based on the giant magnetostrictive material rod and the hydraulic reversing mechanism. On the basis of briefly describing the overall structure design and working principle of this injector, considering the nonlinear hysteresis characteristics of its driving part, an electro-magnetic-mechanical-hydraulic multiphysics coupling model was established based on the Jiles-Atherton hysteresis model. Then, a complete simulation model of the injector was constructed. The needle valve signal was selected as the evaluation index for fuel injection response speed, and the optimal preload force of the needle valve spring was determined. Finally, the parameters such as the control piston diameter, the control cavity volume, the oil inlet diameter and the oil outlet diameter were optimized by using the response surface method, and the influence of the optimized parameters on the response time of the injector was analyzed based on the fitting equation. The results showed that compared with before optimization, the opening delay of the needle valve after optimization was reduced by 3.251%, the opening time was reduced by 1.364%, the closing delay was reduced by 9.465%, and the closing time was reduced by 14.848%. The research indicates that the adopted optimization method can effectively improve the response speed of the needle valve, which is conducive to enhancing the small-quantity fuel injection and multiple fuel injection performance of the high-pressure common rail injector.



Key wordsgiant magnetostrictive      injector      Jiles-Atherton hysteresis model      response surface method      parameter optimization     
Received: 04 September 2024      Published: 02 July 2025
CLC:  TK 422  
Cite this article:

Caofeng YU,Yikai HU,Yongyong DUAN,Zixian WEI,Ning WANG. Response time optimization of high-pressure common rail giant magnetostrictive injector based on response surface method. Chinese Journal of Engineering Design, 2025, 32(3): 373-382.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.04.167     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I3/373


基于响应面法的高压共轨式超磁致伸缩喷油器响应时间优化

为提升高压共轨式喷油器的动态响应特性,基于超磁致伸缩材料棒及液压换向机构,设计了一种高压共轨式超磁致伸缩喷油器。在简述该喷油器整体结构设计和工作原理的基础上,考虑其驱动部分的磁滞非线性特征,基于Jiles-Atherton磁滞模型建立了其电-磁-机-液多场耦合模型。随后,搭建了完整的喷油器仿真模型,选取针阀信号作为喷油响应速度评价指标,确定了针阀弹簧预紧力的最优值。最后,采用响应面法优化了控制活塞直径、控制腔容积、进油孔直径和出油孔直径等参数,并基于拟合方程分析了优化后各参数对喷油器响应时间的影响。结果显示:相较于优化前,优化后针阀的开启延迟缩短了3.251%,开启时间缩短了1.364%,关闭延迟缩短了9.465%,关闭时间缩短了14.848%。研究表明,所采用的优化方法可有效提高针阀的响应速度,有助于提升高压共轨式喷油器的小油量喷油及多次喷油性能。


关键词: 超磁致伸缩,  喷油器,  Jiles-Atherton磁滞模型,  响应面法,  参数优化 
Fig.1 Structure diagram of high-pressure common rail GMI
Fig.2 Working principle of high-pressure common rail GMI
Fig.3 Simulation model of high-pressure common rail GMI
参数数值
线圈电感/mH11.2
线圈电阻/Ω10.8
线圈磁场系数3 180
GMM棒等效阻尼系数/(N·s/m)3×106
饱和磁致伸缩系数1.5×10-3
控制腔容积/mm330
进油孔直径/mm0.21
出油孔直径/mm0.27
平面阀质量/g7.5
针阀质量/g17.3
柱塞直径/mm4.4
针阀直径/mm4.0
针阀半角/(°)29.8
喷孔数量/个6
喷孔直径/mm0.169
Table 1 Main parameters of high-pressure common rail GMI
Fig.4 Driving current waveform
Fig.5 Experimental platform for measuring displacement of GMI driving part
Fig.6 Displacement comparison of GMI driving part
Fig.7 Distribution of response time of needle valve
结构参数初始值取值范围
进油孔直径/mm0.210.20~0.23
出油孔直径/mm0.270.26~0.29
控制腔容积/mm33015~45
控制活塞直径/mm4.44.2~4.5
针阀弹簧预紧力/N4838~68
针阀弹簧刚度/(N/mm)7660~90
针阀锥角/(°)29.825~40
Table 2 Initial value and value range of each structural parameter of GMI
Fig.8 Proportion of importance of each structural parameter in GMI
Fig.9 Univariate analysis results of preload force of needle valve spring
水平

控制活塞

直径A/mm

控制腔容积B/mm3进油孔直径C/mm出油孔直径D/mm
-14.20150.2000.260
04.35300.2150.275
14.50450.2300.290
Table 3 Factor level table for response surface test of GMI structural parameters
试验序号因素tc/ms
A/mmB/mm3C/mmD/mm
14.50300.2150.2900.352 905
24.20300.2300.2750.351 820
34.35300.2000.2600.390 330
44.35300.2150.2750.360 895
54.35300.2150.2750.360 895
64.20300.2000.2750.393 170
74.20150.2150.2750.360 630
84.35300.2300.2600.359 350
94.35450.2150.2900.362 490
104.35300.2000.2900.374 705
114.35150.2000.2750.370 000
124.35150.2300.2750.339 530
134.35150.2150.2900.345 120
144.35450.2000.2750.391 555
154.20300.2150.2900.360 895
164.35300.2150.2750.360 895
174.35300.2150.2750.360 895
184.20300.2150.2600.376 550
194.35420.2150.2600.381 485
204.35300.2300.2900.338 010
214.50300.2300.2750.351 150
224.35300.2150.2750.360 895
234.35450.2300.2750.352 550
244.50150.2150.2750.353 635
254.50300.2000.2750.381 005
264.50450.2150.2750.374 935
274.35150.2150.2600.361 295
284.20450.2150.2750.380 375
294.50300.2150.2600.374 075
Table 4 Response surface test results of GMI structural parameters
Fig.10 Normal probability distribution of residuals of response surface model
Fig.11 Distribution of predicted and actual values of GMI response time
方差与信噪比数值
r20.997 4
rA20.994 8
rP20.985 1
信噪比73.245 7
Table 5 Error analysis results of response surface model
Fig.12 Influence of each structural parameter on response time of GMI
对比项t1/mst2/mst3/mst4/mstc/ms
相对误差/%3.2511.3649.46514.8489.499
优化前0.292 20.212 60.439 50.500 40.371 6
优化后0.282 70.209 70.397 90.426 10.336 3
Table 6 Comparison of simulation results of GMI response time before and after optimization
Fig.13 Comparison of speed, displacement of needle valve and fuel injection rate of GMI before and after optimization
[[1]]   钱德省, 廖日东. 柴油机高压油泵柱塞副泄漏研究进展[J]. 润滑与密封, 2014, 39(9): 108-115, 118. doi:10.3969/j.issn.0254-0150.2014.09.023
QIAN D X, LIAO R D. Review on pison/cylinder interface leakage research of high-pressure pump for diesel engine[J]. Lubrication Engineering, 2014, 39(9): 108-115, 118.
doi: 10.3969/j.issn.0254-0150.2014.09.023
[[2]]   ZHOU Z Q, HE Z B, XUE G M, et al. Analysis of working characteristics of giant magnetostrictive actuator for direct-drive fuel injector[J]. AIP Advances, 2022, 12(7): 075216.
[[3]]   杨朗建, 雷基林, 宋国富, 等. 农用柴油机活塞环组机油消耗和窜气的灰色关联分析与预测[J].农业工程学报, 2023, 39(15): 57-66.
YANG L J, LEI J L, SONG G F, et al. Grey relation analysis and prediction of lube oil consumption and crankcase blow-by in piston ring pack for agricultural diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(15): 57-66.
[[4]]   ZHOU X F, MA Z H, LIU Y N, et al. Influence of injection system parameters on combustion noise of a small power non-road diesel engine[J]. International Journal of Automotive Technology, 2023, 24(5): 1383-1393.
[[5]]   RAMACHANDER J, GUGULOTHU S K, SURYA M S. An experimental assessment on the influence of high fuel injection pressure with ternary fuel (diesel‐Mahua methyl ester‐pentanol) on performance, combustion and emission characteristics of common rail direct injection diesel engine[J]. Heat and Mass Transfer, 2021, 57(12): 2015-2027.
[[6]]   武强, 涂坤, 曾一凡. “双碳” 目标愿景下我国能源战略形势若干问题思考[J]. 科学通报, 2023, 68(15): 1884-1898.
WU Q, TU K, ZENG Y F. Research on China's energy strategic situation under the carbon peaking and carbon neutrality goals[J]. Chinese Science Bulletin, 2023, 68(15): 1884-1898.
[[7]]   喻曹丰, 王传礼, 解甜, 等. 基于GMM的高性能微定位工作台驱动系统的研制[J]. 机械工程学报, 2019, 55(9): 136-143. doi:10.3901/jme.2019.09.136
YU C F, WANG C L, XIE T, et al. Development of drive system of high performance micro positioning worktable based on giant magnetostrictive material[J]. Journal of Mechanical Engineering, 2019, 55(9): 136-143.
doi: 10.3901/jme.2019.09.136
[[8]]   刘易斯, 李俊阳, 杨宇通, 等. 基于超磁致伸缩材料的谐波驱动器结构与磁场优化设计[J]. 重庆大学学报, 2021, 44(2): 94-106.
LIU Y S, LI J Y, YANG Y T, et al. Optimization of structure and magnetic field of a harmonic actuator based on giant magnetostrictive material[J]. Journal of Chongqing University, 2021, 44(2): 94-106.
[[9]]   WANG Z S, WANG H B, LIU X H. Dynamic response of the output force of giant magnetostrictive materials[J]. International Journal of Mechanics and Materials in Design, 2020, 16(4): 685-691.
[[10]]   荣策, 何忠波, 薛光明, 等. 喷油器用超磁致伸缩致动器结构设计及输出特性实验研究[J]. 磁性材料及器件, 2023, 54(1): 50-59.
RONG C, HE Z B, XUE G M, et al. Structural design and output performance testing of giant magnetostrictive actuator for electronic controlled fuel injector[J]. Journal of Magnetic Materials and Devices, 2023, 54(1): 50-59.
[[11]]   LI Y N, ZHANG P L, HE Z B, et al. A simple magnetization model for giant magnetostrictive actuator used on an electronic controlled injector[J]. Journal of Magnetism and Magnetic Materials, 2019, 472: 59-65.
[[12]]   薛光明, 张培林, 何忠波, 等. 超磁致伸缩式喷油器设计与建模[J]. 内燃机学报, 2019, 37(4): 337-342.
XUE G M, ZHANG P L, HE Z B, et al. Design and modeling of the giant magnetostrictive injector[J]. Transactions of CSICE, 2019, 37(4): 337-342.
[[13]]   喻曹丰, 段永勇, 王玉, 等. 超磁致伸缩式喷油器的结构参数优化及其响应特性研究[J]. 机床与液压, 2023, 51(19): 148-154.
YU C F, DUAN Y Y, WANG Y, et al. Optimization of structural parameters and response characteristics of giant magnetostrictive fuel injector[J]. Machine Tool & Hydraulics, 2023, 51(19): 148-154.
[[14]]   车文侃,李立新,汪峰.基于响应面法的铆压型轮毂轴承单元内圈结构优化试验研究[J]. 机电工程, 2025, 42(3): 491-500.
CHE W K, LI L X, WANG F. Experimental study on inner ring structure optimization of riveted wheel bearing unit based on response surface method[J]. Journal of Mechanical & Electrical Engineering, 2025, 42(3): 491-500.
[[15]]   陈国梁, 黄永刚, 邵亚建, 等. 基于响应面优化法的某矿山充填配比优化[J]. 有色金属科学与工程, 2016, 7(2): 73-76.
CHEN G L, HUANG Y G, SHAO Y J, et al. Based on response surface optimization method of certain mine filling ratio optimization[J]. Nonferrous Metals Science and Engineering, 2016, 7(2): 73-76.
[1] Pei YANG,Minglu ZHANG,Lingyu SUN. Design analysis and structural parameter optimization for magnetic adsorption module of wall-climbing robot[J]. Chinese Journal of Engineering Design, 2024, 31(5): 592-602.
[2] Jinyun CAI,Zhong LIU,Gang WANG,Qingbin ZHAO,Ning AN,Xuwei DU,Dongliang LI,Yuanzhou LI. Optimization design of auxiliary tail rope pulling device for winch mill based on response surface methodology[J]. Chinese Journal of Engineering Design, 2024, 31(2): 178-187.
[3] Dong ZHANG,Pei YANG,Zhexuan HUANG,Lingyu SUN,Minglu ZHANG. Design and optimization of pendulous magnetic adsorption mechanism for wall-climbing robots[J]. Chinese Journal of Engineering Design, 2023, 30(3): 334-341.
[4] Chun-jian HUA,Dong-dong LI,Yi JIANG,Jian-feng YU,Ying CHEN. Study on fatigue life of shaft with V-notch under dual-frequency excitation[J]. Chinese Journal of Engineering Design, 2023, 30(1): 102-108.
[5] Peng-cheng ZHANG,Jian-ye NIU,Cheng-lei LIU,Jing-ke SONG,Li-peng WANG,Jian-jun ZHANG. Mechanism parameter optimization and trajectory planning of traction lower limb rehabilitation robot[J]. Chinese Journal of Engineering Design, 2022, 29(6): 695-704.
[6] ZHONG Dao-fang, TIAN Ying, ZHANG Ming-lu. Design and optimization of permanent magnet adsorption device for wheel-legged wall-climbing robot[J]. Chinese Journal of Engineering Design, 2022, 29(1): 41-50.
[7] GAO Qi-sheng, ZHU Xing-hua, YU Yan-kai, ZHENG Rong. Multi-objective optimal design of UUV pressure structure[J]. Chinese Journal of Engineering Design, 2020, 27(2): 232-238.
[8] LIU Chun-qing, WANG Wen-han. Parameter optimization of generating method spherical precision grinding based on ANN-GA[J]. Chinese Journal of Engineering Design, 2019, 26(4): 395-402.
[9] WEI Chun-yu, CAI Yue, LIU Ming-he, ZHANG Qi, JIA Qian-zhong. Design and simulation of new vibration isolation platform for vehicle medical rescue[J]. Chinese Journal of Engineering Design, 2018, 25(5): 532-538.
[10] CHEN Hong-wu, PENG Cong-cong, TIAN Cheng, WANG Li-yuan. Optimal design for truss structure shape based on response surface method[J]. Chinese Journal of Engineering Design, 2018, 25(4): 457-464.
[11] ZHAO Yan-chao, WU Mei-ping, WANG Quan-long, WU Ke-zhong. Optimization of processing parameters for the deep hole straightness of injector[J]. Chinese Journal of Engineering Design, 2018, 25(3): 302-308,314.
[12] LI Yan-kui, LÜ Yan-ming, NI Ming-ming. The wear analysis of precision blasting die for aviation blades based on orthogonal test[J]. Chinese Journal of Engineering Design, 2017, 24(6): 632-637.
[13] YANG Shi-yi, ZHANG Feng-feng, FAN Li-cheng, KUANG Shao-long, SUN Li-ning. Multi target coordinated mechanism parameter optimization method for radiotherapy bed[J]. Chinese Journal of Engineering Design, 2016, 23(3): 256-263.
[14] LI Zhan-fu, TONG Xin. Modeling and parameter optimization for vibrating screens based on AFSA-SimpleMKL[J]. Chinese Journal of Engineering Design, 2016, 23(2): 181-187.
[15] . Multi-objective optimization software development and application[J]. Chinese Journal of Engineering Design, 2015, 22(3): 262-268.