Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (4): 484-492    DOI: 10.3785/j.issn.1006-754X.2022.00.062
Modeling, Simulation, Analysis and Decision     
Simulation and experimental research on temperature field of multipole magnetorheological clutch
Shao-yu TANG(),Jie WU(),Hui ZHANG,Bing-bing DENG,Yu-ming HUANG,Hao HUANG
School of Mechanical Engineering, Xihua University, Chengdu 610000, China
Download: HTML     PDF(4284KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the problem that the transmission torque decreases or even the magnetorheological fluid fails due to internal heat accumulation in the magnetorheological clutch during slip operation, the temperature distribution characteristics of a multipole magnetorheological clutch with excitation coils and permanent magnets superimposed were studied by combining simulation and experiment. Firstly, the heat source of multipole magnetorheological clutch was analyzed, and its temperature field mathematical model was established. Then, the finite element simulation method was used to simulate and analyze the temperature field of multipole magnetorheological clutch under the conditions of natural heat dissipation and forced air-cooling heat dissipation. Finally, the multipole magnetorheological clutch experimental platform was built to carry out the temperature characteristic test experiment. The results showed that the maximum allowable slip power was 160?170 W when the multipole magnetorheological clutch operated continuously under the condition of natural heat dissipation; under the condition of forced air-cooling heat dissipation, the maximum allowable slip power was 730?830 W; if the instantaneous slip power was 3 000 W, the allowable slip time was 280 s without failure of magnetorheological fluid. Regardless of the transient or steady state conditions, the lowest temperature of the multipole magnetorheological clutch occurred at the shaft end of the power input disc far away from the outer housing, and the highest temperature occurred at the second magnetorheological fluid working gap. When the way of forced air-cooling heat dissipation was adopted, the temperature rise speed of the multipole magnetorheological clutch decreased, so as to prolong its slip operation time. The research results provide a theoretical reference for the study of temperature distribution characteristics of magnetorheological devices.



Key wordsmagnetorheological clutch      temperature field      simulation analysis      experimental verification     
Received: 05 January 2022      Published: 05 September 2022
CLC:  TH 132  
Corresponding Authors: Jie WU     E-mail: xh_tsy@163.com;jiewu09323@mail.xhu.edu.cn
Cite this article:

Shao-yu TANG,Jie WU,Hui ZHANG,Bing-bing DENG,Yu-ming HUANG,Hao HUANG. Simulation and experimental research on temperature field of multipole magnetorheological clutch. Chin J Eng Design, 2022, 29(4): 484-492.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.062     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I4/484


多极式磁流变离合器温度场仿真与实验研究

针对磁流变离合器在滑差工作时因内部热量聚集而造成传递力矩下降甚至磁流变液失效的问题,采用仿真与实验相结合的方法对一种励磁线圈与永磁体相叠加的多极式磁流变离合器的温度分布特性进行研究。首先,分析了多极式磁流变离合器的热量来源,并建立了其温度场数学模型。然后,利用有限元模拟方法对多极式磁流变离合器在自然散热与强制风冷散热条件下的温度场进行了仿真分析。最后,通过搭建多极式磁流变离合器实验平台开展了温度特性测试实验。结果表明:多极式磁流变离合器在自然散热条件下连续滑差运行时,允许的最大滑差功率为160~170 W;在强制风冷散热条件下连续滑差运行时,允许的最大滑差功率为730~830 W;若瞬时滑差功率为3 000 W,则在磁流变液不失效的情况下允许的滑差时间为280 s。无论是瞬态还是稳态工况,多极式磁流变离合器的最低温度均出现在远离外壳体的动力输入盘轴端处,最高温度出现在第2个磁流变液工作间隙处。当采用强制风冷散热方式时,多极式磁流变离合器的温升速度降低,从而可延长其滑差运行时间。研究结果为磁流变装置的温度分布特性研究提供了理论参考。


关键词: 磁流变离合器,  温度场,  仿真分析,  实验验证 
Fig.1 Structure diagram of multipole magnetorheological clutch
Fig.2 Dimensional parameters of multipole magnetorheological clutch
尺寸参数数值
内定子宽度D1/mm25
外定子宽度D2/mm40
永磁体角度θ1/(°)46
外定子角度θ2/(°)50
动力输入盘内径r1/mm23.5
侧围板外径r2/mm130
磁流变液轴向长度z/mm30
内定子厚度C1/mm13.5
外定子厚度C2/mm18
圆柱壳厚度d/mm2
磁流变液工作间隙宽度h/mm1
隔环厚度d1/mm6
Table 1 Dimensional parameter values of multipole magnetorheological clutch
部件材料密度ρ/(kg/m3)热导率k/(W/(m2·℃))比热容c/(J/(kg·℃))
动力输入盘不锈钢7 80014460
圆柱壳20钢7 80048460
工作间隙磁流变液3 55011 006
动力输出盘不锈钢7 80014460
外壳体不锈钢7 80014460
定子20钢7 80048460
励磁线圈纯铜8 900384394
永磁体钕铁硼7 8008.9386
Table 2 Physical properties of materials used in multipole magnetorheological clutch
Fig.3 Steady state temperature field of multipole magnetorheological clutch under natural heat dissipation
Fig.4 Two-dimensional plane diagram of magnetorheological fluid working gap
Fig.5 Steady state temperature distribution of magnetorheological fluid at different working gaps
Fig.6 Steady state temperature distribution of magnetorheological fluid under different slip powers
Fig.7 Transient temperature distribution of magnetorheological fluid under different slip powers
Fig.8 Cloud diagram of cooling air velocity distribution of multipole magnetorheological clutch
Fig.9 Steady state temperature field of multipole magnetorheological clutch under forced air-cooling heat dissipation
Fig.10 Comparison of maximum transient temperature of excitation coil under different heat dissipation modes
Fig.11 Comparison of maximum transient temperature of magnetorheological fluid under different heat dissipation modes
Fig.12 Main equipment of multipole magnetorheological clutch temperature test experimental platform
Fig.13 Physical object of multipole magnetorheological clutch temperature test experimental platform
Fig.14 Transient temperature of multipole magnetorheological clutch under natural heat dissipation
Fig.15 Comparison of maximum transient temperature of excitation coil under natural heat dissipation
Fig.16 Transient temperature of multipole magnetorheological clutch under forced air-cooling heat dissipation
Fig.17 Comparison of maximum transient temperature of excitation coil under forced air-cooling heat dissiportion
[1]   CHEN X, ZHU X, XU Z, et al. The research of the conductive mechanism and properties of magnetorheological fluids[J]. Physica B: Condensed Matter, 2013, 418: 32-35. doi:10.1016/j.physb.2013.02.042
doi: 10.1016/j.physb.2013.02.042
[2]   姚黎明,王竹轩,顾玲,等.磁流变液及其工程应用[J].液压与气动,2009(7):64-66.
YAO Li-ming, WANG Zhu-xuan, GU Ling, et al. Magnetorheological fluid and its engineering application[J]. Chinese Hydraulics & Pneumatics, 2009(7): 64-66.
[3]   李凯权,代俊,常辉,等.磁流变材料的应用综述[J].探测与控制学报,2019,41(1):6-14.
LI Kai-quan, DAI Jun, CHANG Hui, et al. Review of magnetorheological materials application[J]. Journal of Detection & Control, 2019, 41(1): 6-14.
[4]   张莉洁,朱德荣,舒云星,等.磁流变离合器结构设计与分析[J].机械设计与制造,2018(11):88-91. doi:10.3969/j.issn.1001-3997.2018.11.024
ZHANG Li-jie, ZHU De-rong, SHU Yun-xing, et al. Structure design and analysis of magneto-rheological fluid clutch[J]. Machinery Design & Manufacture, 2018(11): 88-91.
doi: 10.3969/j.issn.1001-3997.2018.11.024
[5]   MCKEE M, GORDANINEJAD F, WANG X. Effects of temperature on performance of compressible magnetorheo-logical fluid suspension systems[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(1): 41-51. doi:10.1177/1045389x17705203
doi: 10.1177/1045389x17705203
[6]   WANG D, ZI B, ZENG Y, et al. An investigation of thermal characteristics of a liquid-cooled magnetorheological fluid-based clutch[J]. Smart Materials and Structures, 2015, 24(5): 055020. doi:10.1088/0964-1726/24/5/055020
doi: 10.1088/0964-1726/24/5/055020
[7]   GORDANINEJAD F, BREESE D G. Heating of magnetorheological fluid dampers[J]. Journal of Intelligent Material Systems and Structures, 1999, 10(8): 634-645. doi:10.1106/55d1-xaxp-yfh6-b2fb
doi: 10.1106/55d1-xaxp-yfh6-b2fb
[8]   PATIL S R, POWAR K P, SAWANT S M. Thermal anslysis of magnctorheo logical brake for automotive appilcation[J]. Applied Thermal Engineering, 2016, 98: 238-245. doi:10.1016/j.applthermaleng.2015.11.128
doi: 10.1016/j.applthermaleng.2015.11.128
[9]   陈松,李峰,黄金,等.温度对磁流变液材料及传力性能的影响[J].材料导报,2015,29(8):151-155. doi:10.11896/j.issn.1005-023X.2015.16.033
CHEN Song, LI Feng, HUANG Jin, et al. Influence of temperature on magnetorheological fluid and transmission performance[J]. Materials Review, 2015, 29(8): 151-155.
doi: 10.11896/j.issn.1005-023X.2015.16.033
[10]   田祖织.磁流变液及其传动技术研究[D].徐州:中国矿业大学,2012:80-105.
TIAN Zu-zhi. Research on magnetorheological fluids and transmission technology[D]. Xuzhou: China University of Mining and Technology, 2012: 80-105.
[11]   王道明.大功率磁流变传动技术及温度效应研究[D].徐州:中国矿业大学,2014:95-100.
WANG Dao-ming. Research on high-power magnetorheological transmission technology and temperature effect[D]. Xuzhou: China University of Mining and Technology, 2014: 95-100.
[12]   黄仕彪.磁流变液发热机理综述及其影响因素[J].现代机械,2021(2):89-92. doi:10.13667/j.cnki.52-1046/th.2021.02.020
HUANG Shi-biao. Review on heating mechanism of magneto rheological fluid and its influencing factors[J]. Modern Machinery, 2021(2): 89-92.
doi: 10.13667/j.cnki.52-1046/th.2021.02.020
[13]   丁舜年.大型电机的发热与冷却[M].北京:科学出版社,1992:24-31.
DING Shun-nian. Heating and cooling of large motors[M]. Beijing: Science Press, 1992: 24-31.
[14]   郑祥盘,陈凯峰,陈淑梅.曳引电梯磁流变制动装置的温度特性研究[J].中国机械工程,2016,27(16):2141-2147,2154. doi:10.3969/j.issn.1004-132X.2016.16.003
ZHENG Xiang-pan, CHEN Kai-feng, CHEN Shu-mei. Investigation on temperature properties of elevator magnetorheological brake[J]. China Mechanical Engineering, 2016, 27(16): 2141-2147, 2154.
doi: 10.3969/j.issn.1004-132X.2016.16.003
[1] Dong ZHANG,Pei YANG,Zhexuan HUANG,Lingyu SUN,Minglu ZHANG. Design and optimization of pendulous magnetic adsorption mechanism for wall-climbing robots[J]. Chin J Eng Design, 2023, 30(3): 334-341.
[2] Yi LI,Guo-hua CHEN,Ming XIA,Bo LI. Design and simulation optimization of motorized spindle cooling system[J]. Chin J Eng Design, 2023, 30(1): 39-47.
[3] Fu-qiang ZHAO,Te DU,Bao-yu CHANG,Zhi-gang NIU. Dynamics analysis and experimental research on leg lifting condition of limb-leg crawler foot mechanism[J]. Chin J Eng Design, 2022, 29(4): 474-483.
[4] FAN Xiao-yue, LIU Qi, GUAN Wei, ZHU Yun, CHEN Su-lin, SHEN Bin. Simulation and experimental research on thermal effect of electromagnetic micro hammer peening mechanism[J]. Chin J Eng Design, 2022, 29(1): 66-73.
[5] ZHANG Qin, PANG Ye-zhong, WANG Kai. Simulation analysis and experimental research on robot pedaling weeding process[J]. Chin J Eng Design, 2021, 28(6): 709-719.
[6] ZHANG Shen-tong. Analysis of landing load of aircraft landing gear based on virtual prototype technology[J]. Chin J Eng Design, 2021, 28(6): 758-763.
[7] CHEN Zhen, XIONG Tao, YANG Yan-qing, XUE Xiao-wei. Sealing performance analysis and structure optimization of sealing ring of soluble ball seat[J]. Chin J Eng Design, 2021, 28(6): 720-728.
[8] YU Ru-fei, KOU Xin, CHEN Wei. Simulation analysis of novel surface texture based on CFD[J]. Chin J Eng Design, 2021, 28(4): 466-472.
[9] BAI Yang-xi, CHEN Hong-yue, CHEN Hong-yan, WANG Xin, LI Jian-gang. Vibration analysis and experimental verification of shearer sliding shoes based on drum load[J]. Chin J Eng Design, 2021, 28(3): 358-366.
[10] WU Cong-kui, HE Bai-yan, YUAN Peng-fei. Thermal-structural analysis of hoop deployable antenna with metal hinges[J]. Chin J Eng Design, 2020, 27(3): 349-356.
[11] WANG Yu-pu, CHENG Wen-ming, DU Run, WANG Shu-biao, YANG Xing-zhou, ZHAI Shou-cai. Simulation analysis of wind load response for large gantry crane[J]. Chin J Eng Design, 2020, 27(2): 239-246.
[12] HAO Di-long, HE Xia, WANG Guo-rong, YI Jian-guo, CHEN Zhang-bin. Structure optimization of integral slip groove[J]. Chin J Eng Design, 2019, 26(5): 534-543.
[13] WANG Ke-fei, SHI Pei-cheng, PENG Shan-shan, DIAO Jie-sheng. Static stiffness analysis of automotive BIW under different boundary constraint conditions[J]. Chin J Eng Design, 2019, 26(4): 441-451.
[14] CHEN Zhao-ming, XU Ze-yu, ZOU Jing-song, ZHAO Ying, SHI Ming-quan. Hydraulic system design of multi-functional laying trolley equipment in tunnel construction and its response characteristic analysis[J]. Chin J Eng Design, 2019, 26(1): 116-122.
[15] FAN Shu-yuan, WANG Hai-bo, WU Xiao-di, ZHANG Le, ZHANG Long. Research on load-bearing performance of industrial assembly exoskeleton manipulator[J]. Chin J Eng Design, 2018, 25(6): 697-702.