Whole Machine and System Design |
|
|
|
|
Structure design and analysis of integrated photovoltaic power supply device in polar regions |
Zheng LIU1,2( ),Bing-zhen WANG1( ),Gai-yun HE2,Yuan-fei ZHANG1,Xu-yu CHENG3 |
1.National Ocean Technology Center, Tianjin 300112, China 2.Key Laboratory of Mechanism Theory and;Equipment Design of Ministry of Education, Tianjin University, Tianjin 300072, China 3.Polar Research Institute of China, Shanghai 200136, China |
|
|
Abstract Solar energy independent power supply is one of the important ways to solve the power supply problem of long-term field observation activities in the Antarctic region. According to the specific environment of polar region, a mobile photovoltaic (PV) power supply device based on container was designed. Firstly, the calculation model of solar radiation on the inclined plane of PV modules under the constraint of structural integration was constructed, and the optimal inclination angle of PV modules was determined; secondly, CFD (computational fluid dynamics) method was used to analyze the wind load of PV modules at the optimal inclination angle and different wind direction angles, and the typical wind load conditions of PV modules were determined; finally, the mechanical properties of PV bracket under typical working conditions were analyzed by finite element method. The results showed that for the integrated double row PV modules, the optimal inclination angle of the upper and lower rows of PV modules were 29° and 39° respectively. There were three typical working conditions for PV modules: when wind direction angle was 20°, all PV modules were subject to downward pressure; when wind direction angle was 120°, one row of PV modules was subject to downward pressure and the other row was subject to upward lifting; when wind direction angle was 140°, both rows were subject to upward lifting. Under three typical working conditions, the maximum stress of the PV bracket was 103.93 MPa, and the safety factor was 2.98, which met the strength requirements; the hinge joint of 2 rows of PV brackets had large deformation, with the maximum value of 4.33 mm; the bracket deformation distribution was greatly affected by wind direction, in which the deformation on the windward side was up to 3.7 mm, and the deformation on the other side was less than 1 mm. The research results can provide some reference for solving the power supply problem of long-term field independent observation activities in the polar region.
|
Received: 31 May 2021
Published: 05 September 2022
|
|
Corresponding Authors:
Bing-zhen WANG
E-mail: zheng_liu621@163.com;wang_bingzhen@163.com
|
极区集成式光伏供电装置结构设计与分析
太阳能独立供电是解决南极野外长周期观测活动供电问题的重要途径之一。针对极区特定环境,设计了一种基于集装箱的可移动光伏供电装置。首先,构建了在结构集成化约束条件下光伏组件斜面上太阳辐射量计算模型,确定了光伏组件最优安装倾角;其次,利用CFD (computational fluid dynamics,流体动力学)方法分析了在最优安装倾角、不同风向角时光伏组件的风载荷,并确定了光伏组件的典型风载荷工况;最后,通过有限元方法分析了在典型工况下光伏支架的力学性能。结果表明,对于集成式双排光伏组件,上、下排光伏组件的最优安装倾角分别为29°、39°。光伏组件存在3种典型工况:当风向角为20°时,2排光伏组件均受到下压作用;当风向角为120°时,一排光伏组件受下压作用,另一排受上抬作用;当风向角为140°时,2排光伏组件均受到上抬作用。在3种典型工况下,光伏支架的最大应力为103.93 MPa,安全系数达2.98,满足强度要求;2排光伏支架铰接处的变形较大,最大值为4.33 mm;支架变形分布受风向影响较大,其中来风侧变形量达3.7 mm,另一侧变形量小于1 mm。研究结果可以为解决极区野外长周期独立观测活动的电能供给问题提供一定的参考。
关键词:
南极,
光伏组件,
集成化,
风载荷,
力学性能
|
|
[1] |
CHEN L. The role of the Arctic and Antarctic and their impact on global climate change: Further findings since the release of IPCC AR4, 2007[J]. Advances in Polar Science, 2013, 24(2): 79-85. doi:10.3724/sp.j.1085. 2013.00079
doi: 10.3724/sp.j.1085. 2013.00079
|
|
|
[2] |
CHEEK J, HUYGE B, DE POMEREU J. Princess Elisabeth Antarctica: An International Polar Year outreach and media success story[J]. Polar Research, 2011, 30(1): 11153. doi:10.3402/polar.v30i0.11153
doi: 10.3402/polar.v30i0.11153
|
|
|
[3] |
DE CHRISTO T M, FARDIN J F, SIMONETTI D S L, et al. Design and analysis of hybrid energy systems: The Brazilian Antarctic Station case[J]. Renewable Energy, 2016, 88: 236-246. doi:10.1016/j.renene.2015.11.014
doi: 10.1016/j.renene.2015.11.014
|
|
|
[4] |
OBARA S, HAMANAKA R, EL-SAYED A G. Design methods for microgrids to address seasonal energy availability: A case study of proposed Showa Antarctic Station retrofits[J]. Applied Energy, 2019, 236: 711-727. doi:10.1016/j.apenergy.2018.12.031
doi: 10.1016/j.apenergy.2018.12.031
|
|
|
[5] |
BOCCALETTI C, DI FELICE P, SANTINI E. Integration of renewable power systems in an Antarctic Research Station[J]. Renewable Energy, 2014, 62: 582-591. doi:10.1016/j.renene.2013.08.021
doi: 10.1016/j.renene.2013.08.021
|
|
|
[6] |
吕俊杰.极端条件下直流微型电网的研究与开发[D].南京:东南大学,2011:50-60. Jun-jie LÜ. Research and development of DC micro-grid in low condition[D]. Nanjing: Southeast University, 2011: 50-60.
|
|
|
[7] |
席晓琴.南极中山站风光互补供电系统设计[D].太原:太原理工大学,2018:7-20. XI Xiao-qin. Design of wind and solar complementary power supply system in Antarctica Zhongshan Station[D]. Taiyuan: Taiyuan University of Technology, 2018:7-20.
|
|
|
[8] |
吕冬翔,李钏,王哲超,等.南极泰山站多能互补微电网系统研究及实证[J].极地研究,2020,32(2):184-194. Dong-xiang LÜ, LI Chuan, WANG Zhe-chao, et al. Design and implementation of a multi-energy complementary microgrid system at Taishan Station, Antarctica[J]. Chinese Journal of Polar Research, 2020, 32(2): 184-194.
|
|
|
[9] |
王兵振,张原飞,程绪宇.南极中山站30 kW光伏发电系统工作特性研究[J].太阳能学报,2021,42(4):272-277. WANG Bing-zhen, ZHANG Yuan-fei, CHENG Xu-yu. Study on characteristics of 30 kW PV system in Zhongshan station, Antarctica[J]. Acta Energiae Solaris Sinica, 2021, 42(4): 272-277.
|
|
|
[10] |
孙弘历,段梦凡,赵海湉,等.国内外南极科考站建筑节能策略[J].建筑节能,2020,48(9):1-7,35. doi:10.3969/j.issn.1673-7237.2020.09.001 SUN Hong-li, DUAN Meng-fan, ZHAO Hai-tian, et al. Energy-saving strategies of Chinese and Foreign Antarctic scientific research stations[J]. Building Energy Efficiency, 2020, 48(9): 1-7, 35.
doi: 10.3969/j.issn.1673-7237.2020.09.001
|
|
|
[11] |
王炳忠.中国太阳能资源利用区划[J].太阳能学报,1983,4(3):221-228. WANG Bing-zhong. Solar energy resource division in China[J]. Acta Energiae Solaris Sinica, 1983, 4(3): 221-228.
|
|
|
[12] |
刘湘,罗云兵,陈宏.南极中山站蔬菜生产温室项目结构设计[J].建筑结构,2020,50(12):95-99. LIU Xiang, LUO Yun-bing, CHEN Hong. Structural design of vegetable production greenhouse project in Antarctic Zhongshan Station[J]. Building Structure, 2020, 50(12): 95-99.
|
|
|
[13] |
KLEIN S A, THEILACHER J C. An algorithm for calculating monthly-average radiation on inclined surfaces[J]. Journal of Solar Energy Engineering, 1981, 103: 29-33. doi:10.1115/1.3266201
doi: 10.1115/1.3266201
|
|
|
[14] |
陈艳,张科智,鲁长琴.固定式光伏方阵最佳倾角的计算与分析[J].太阳能学报,2019,40(6):1567-1575. CHEN Yan, ZHANG Ke-zhi, LU Chang-qin. Calculation and analysis of optimum tilted angle for fixed photovoltaic array[J]. Acta Energiae Solaris Sinica, 2019, 40(6): 1567-1575.
|
|
|
[15] |
TRIPATHY M, YADAV S, PANDA S K, et al. Performance of building integrated photovoltaic thermal systems for the panels installed at optimum tilt angle[J]. Renewable Energy, 2017, 113: 1056-1069. doi:10.1016/j.renene.2017.06.052
doi: 10.1016/j.renene.2017.06.052
|
|
|
[16] |
JUBAYER C M, HANGAN H. Numerical simulation of wind effects on a stand-alone ground mounted photovoltaic (PV) system[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 134: 56-64. doi:10.1016/j.jweia.2014.08.008
doi: 10.1016/j.jweia.2014.08.008
|
|
|
[17] |
张炜,薛建阳,黄华,等.大倾角地面太阳电池板风荷载数值模拟研究[J].太阳能学报,2021,42(6):138-145. ZHANG Wei, XUE Jian-yang, HUANG Hua, et al. Numerical simulation of wind load on solar cell panel with high-inclination[J]. Acta Energiae Solaris Sinica, 2021, 42(6): 138-145.
|
|
|
[18] |
WANG J, VAN P P, YANG Q, et al. LES study of wind pressure and flow characteristics of flat-roof-mounted solar arrays[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 198: 104096. doi:10. 1016/j.jweia.2020.104096
doi: 10. 1016/j.jweia.2020.104096
|
|
|
[19] |
JUBAYER C M, HANGAN H. A numerical approach to the investigation of wind loading on an array of ground mounted solar photovoltaic (PV) panels[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2016, 153: 60-70. doi:10.1016/j.jweia.2016.03.009
doi: 10.1016/j.jweia.2016.03.009
|
|
|
[20] |
牛斌,张超,侯巍,等.基于CFD方法的地面光伏阵列风压时程特性研究[J].太阳能学报,2016,37(7):1774-1779. doi:10.3969/j.issn.0254-0096.2016.07.024 NIU Bin, ZHANG Chao, HOU Wei, et al. Time history analysis of wind load on arrayed solar panels based on CFD simulations[J]. Acta Energiae Solaris Sinica, 2016, 37(7): 1774-1779.
doi: 10.3969/j.issn.0254-0096.2016.07.024
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|