Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (4): 500-509    DOI: 10.3785/j.issn.1006-754X.2022.00.056
Whole Machine and System Design     
Development of dynamic test equipment for rotor airfoil in high speed wind tunnel
Wei-guo ZHANG1(),Guo-qiang LI2(),Kui-hui SONG3,Xu YAN4,Liang-liang ZHAO3
1.School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
2.College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
3.Low Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China
4.Sichuan Tongren Precision Technology Co. , Ltd. , Mianyang 621000, China
Download: HTML     PDF(5819KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to make up for the deficiency of simulation ability and test accuracy of rotor airfoil dynamic test in high speed wind tunnel at domestic, based on the FL-20 continuous transonic wind tunnel, a method of dual-end synchronous driving rotor airfoil test model was proposed, and a dynamic test equipment for the high speed wind tunnel was designed. The equipment relied on the way of dual-balance dynamic load measurement combined with surface dynamic pressure measurement, which could improve the dynamic aerodynamic load measurement accuracy of rotor airfoil. The wind tunnel test results showed that: when the pitch oscillation amplitude of rotor airfoil test model was 10°, its oscillation frequency could reach 17 Hz, the test Mach number was 0.6, and the Reynolds number was 5×106, which was at the international leading level. The developed dynamic test equipment and its related test technology have high reliability, and the test data is reliable and its law is reasonable, which has the ability to carry out high speed wind tunnel dynamic test. It can provide important technical support for the research of rotor airfoil dynamic stall and the simulation of real helicopter test parameters.



Key wordsrotor      airfoil      high speed wind tunnel      dynamic stall      test equipment     
Received: 27 October 2021      Published: 05 September 2022
CLC:  V 216.8  
Corresponding Authors: Guo-qiang LI     E-mail: zwglxy@163.com;CARDCL@126.com
Cite this article:

Wei-guo ZHANG,Guo-qiang LI,Kui-hui SONG,Xu YAN,Liang-liang ZHAO. Development of dynamic test equipment for rotor airfoil in high speed wind tunnel. Chin J Eng Design, 2022, 29(4): 500-509.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.056     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I4/500


旋翼翼型高速风洞动态试验装置研制

为弥补国内在旋翼翼型高速风洞动态试验模拟能力和测试精度方面的不足,基于FL-20连续式跨音速风洞,提出采用双端同步驱动旋翼翼型试验模型的方式,设计了一套高速风洞动态试验装置。该装置依托双天平动态载荷测量结合表面动态压力测量的方式,可提高旋翼翼型动态气动载荷的测量精度。风洞试验结果显示:当旋翼翼型试验模型的俯仰振荡幅值为10°时,其振荡频率可达17 Hz,且试验马赫数为0.6,雷诺数达到5×106,处于国际领先水平。所研制的动态试验装置及其相关测试技术具有较高的可靠性,且试验数据可靠、规律合理,具备了开展高速风洞动态试验的能力,可为旋翼翼型动态失速问题的研究以及真实直升机试验参数的模拟提供重要的技术支撑。


关键词: 旋翼,  翼型,  高速风洞,  动态失速,  试验装置 
技术指标量值
最大俯仰振荡幅值10°
最高俯仰振荡频率15 Hz
俯仰振荡迎角范围-180°~180°
最大试验马赫数≥0.6
Table 1 Technical index requirements of dynamic test equipment for rotor airfoil in high speed wind tunnel
Fig.1 Installation structure of dynamic test equipment for rotor airfoil in high speed wind tunnel
Fig.2 Structure diagram of dual-end synchronous motion control mechanism
Fig.3 Structure diagram of crank linkage rod mechanism without snapback
Fig.4 Schematic diagram of balance attack angle adjustment mechanism
Fig.5 Schematic diagram of oscillation amplitude adjustment mechanism
传感器量程/kPa
XCE-062-1.7 BAR动压传感器170
XCEL-100-1 BAR动压传感器100
Table 2 Parameters of dynamic pressure sensors
Fig.6 Schematic diagram of dual-balance dynamic load measuring mechanism
参数量值
天平桥路惠斯顿全桥
测量元件ZF350-3AA常温应变片
桥路数量6 个
桥路供电电压10 V
Table 3 Main parameters of balance
Fig.7 Structure diagram of OA309 rotor airfoil test model
Fig.8 Simulation result of first-order mode of rotor airfoil test model
Fig.9 Simulation results of first and second order modes of dynamic test equipment of rotor airfoil in high speed wind tunnel
Fig.10 Control system framework of dynamic test equipment for rotor airfoil in high speed wind tunnel
Fig.11 Upper computer software structure of control system of dynamic test equipment for rotor airfoil in high speed wind tunnel
Fig.12 Human-machine interface of control system of dynamic test equipment for rotor airfoil in high speed wind tunnel
参数量值
型号NOVO GL300
测量范围0°~360°
分辨率0.1°
线性度±0.25%
Table 4 Main parameters of Novotechnik angular displacement sensor
Fig.13 Change curve of potentiometer feedback voltage with time
Fig.14 Motion performance assessment result of dynamic test equipment for rotor airfoil in high speed wind tunnel (with oscillation frequency of 17 Hz)
Fig.15 Pressurization performance assessment result of dynamic test equipment for rotor airfoil in high speed wind tunnel
Fig.16 Comparison of synchronous force measurement and pressure measurement results of rotor airfoil test model
技术指标量值
最大俯仰振荡幅值10°
最高俯仰振荡频率17 Hz
试验雷诺数5×106
最大试验马赫数0.6
Table 5 Actual technical indexes of dynamic test equipment for rotor airfoil in high speed wind tunnel
[1]   LEISHMAN J G. Principles of helicopter aerodynamics[M]. 2nd ed. New York: Cambridge University Press, 2006: 525-527.
[2]   李国强,张卫国,陈立,等.风力机叶片翼型动态试验技术研究[J].力学学报,2018,50(4):751-765. doi:10.6052/0459-1879-18-108
LI Guo-qiang, ZHANG Wei-guo, CHEN Li, et al. Research on dynamic test technology for wind turbine blade airfoil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 751-765.
doi: 10.6052/0459-1879-18-108
[3]   NEGI P S, HANIFI A, HENNINGSON D S. Unsteady response of natural laminar flow airfoil undergoing small-amplitude pitch oscillations[J]. AIAA Journal, 2021, 59(8): 2868-2877. doi:10.2514/1.j059743
doi: 10.2514/1.j059743
[4]   马奕扬,招启军,赵国庆.基于后缘小翼的旋翼翼型动态失速控制分析[J].航空学报,2017,38(3):120312. doi:10.7527/S1000-6893.2016.0220
MA Yi-yang, ZHAO Qi-jun, ZHAO Guo-qing, et al. Dynamic stall control of rotor airfoil via trailing-edge flap[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 120312.
doi: 10.7527/S1000-6893.2016.0220
[5]   喻伯平,李高华,谢亮,等.基于代理模型的旋翼翼型动态失速优化设计[J].浙江大学学报(工学版),2020,54(4):833-842. doi:10.3785/j.issn.1008-973X.2020.04.023
YU Bo-ping, LI Gao-hua, XIE Liang, et al. Dynamic stall optimization design of rotor airfoil based on surrogate model[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(4): 833-842.
doi: 10.3785/j.issn.1008-973X.2020.04.023
[6]   QIU Zhan, WANG Fu-xin. Aeroelastic responses of airfoil under dynamic stall forced to oscillate by cyclic pitch input[J]. Journal of Sound and Vibration, 2020, 479: 115366. doi:10.1016/j.jsv.2020.115366
doi: 10.1016/j.jsv.2020.115366
[7]   戴玉婷,严慧,王林鹏.基于非线性气动力的失速颤振计算与试验研究[J].工程力学,2020,37(8):230-236. doi:10.6052/j.issn.1000-4750.2019.03.0141
DAI Yu-ting, YAN Hui, WANG Lin-peng. Calculation and experimental study of stall flutter based on nonlinear aerodynamics[J]. Engineering Mechanics, 2020, 37(8): 230-236.
doi: 10.6052/j.issn.1000-4750.2019.03.0141
[8]   张庆,叶正寅.NACA0012翼型跨声速强迫运动非定常气动力模型[J].哈尔滨工程大学学报,2020,41(11):1683-1688. doi:10.11990/jheu.201903018
ZHANG Qing, YE Zheng-yin. Unsteady aerodynamic model of NACA0012 associated with forced oscillations and translations in transonic flight[J]. Journal of Harbin Engineering University, 2020, 41(11): 1683-1688.
doi: 10.11990/jheu.201903018
[9]   RICHTER K, KOCH S, GARDNER A D, et al. Experimental investigation of unsteady transition on a pitching rotor blade airfoil[J]. Journal of the American Helicopter Society, 2014, 59(1): 12001(1)-12001(12). doi:10.4050/jahs.59.012001
doi: 10.4050/jahs.59.012001
[10]   REINERT T, FLEMMING R J, NARDUCCI R, et al. Oscillating airfoil icing tests in the NASA Glenn Research Center Icing Research Tunnel[C]//SAE 2011 International Conference on Aircraft and Engine Icing and Ground Deicing, Chicago, Jun. 13-17, 2011.
[11]   LE PAPE A, PAILHAS G, DAVID F, et al. Extensive wind tunnel tests measurements of dynamic stall phenomenon for the OA209 airfoil including 3D effects[C]//Proceedings of the 33rd European Rotorcraft Forum, Kazan, Sept. 11-13, 2007.
[12]   MERRILL B E, PEET Y T. Effect of impinging wake turbulence on the dynamic stall of a pitching airfoil[J]. AIAA Journal, 2017, 55(12): 4094-4112. doi:10.2514/1.J055405
doi: 10.2514/1.J055405
[13]   DEHKORDI M H R, SOLTANI M R, DAVARI A R. Statistical analysis on the effect of reduced frequency on the aerodynamic behavior of an airfoil in dynamic physical motions[J]. Physica A: Statistical Mechanics and its Applications, 2019, 535: 122450. doi:10.1016/j.physa.2019.122450
doi: 10.1016/j.physa.2019.122450
[14]   GREEN R B, GILLIES E A, WANG Y. Trailing-edge flap flow control for dynamic stall[J]. The Aeronautical Journal, 2011, 115(1170): 493-503. doi:10.1017/s0001924000006138
doi: 10.1017/s0001924000006138
[15]   SAMARA F, JOHNSON D A. Dynamic stall on pitching cambered airfoil with phase offset trailing edge flap[J]. AIAA Journal, 2020, 58(7): 2844-2856. doi:10.2514/1.J059115
doi: 10.2514/1.J059115
[16]   CASTAEDA D, WHITING N, WEBB N, et al. An experimental investigation of deep dynamic stall control using plasma actuators[J]. Experiments in Fluids, 2022, 63: 69. doi:10.1007/s00348-022-03421-w
doi: 10.1007/s00348-022-03421-w
[17]   张卫国,武杰,兰波,等.旋翼翼型低速风洞静、动态试验技术研究[C]//中国力学大会‒2015论文摘要集.上海:中国力学学会,2015:242.
ZHANG Wei-guo, WU Jie, LAN Bo, et al. Static and dynamic test technology for rotor airfoil low speed wind tunnel[C]//Proceedings of the Chinese Congress of Theoretical and Applied Mechanics (CCTAM 2015). Shanghai: Chinese Society of Theoretical Applied Mechanics, 2015: 242.
[18]   许和勇,邢世龙,叶正寅,等.基于充气前缘技术的旋翼翼型动态失速抑制[J].航空学报,2017,38(6):120799. doi:10.7527/S1000-6893.2016.0308
XU He-yong, XING Shi-long, YE Zheng-yin, et al. Dynamic stall suppression for rotor airfoil based on inflatable leading edge technology[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120799.
doi: 10.7527/S1000-6893.2016.0308
[19]   王莹,高超,吕哲.跨声速风洞翼型动态失速试验系统研制[J].科学技术与工程,2018,18(32):95-103. doi:10.3969/j.issn.1671-1815.2018.32.016
WANG Ying, GAO Chao, Zhe LÜ. The development of airfoil dynamic stall experiment system in a transonic wind tunnel[J]. Science Technology and Engineering, 2018, 18(32): 95-103.
doi: 10.3969/j.issn.1671-1815.2018.32.016
[20]   史志伟,耿存杰,明晓.旋翼翼型俯仰沉浮运动非定常气动特性实验研究[J].实验流体力学,2007,21(3):18-23. doi:10.3969/j.issn.1672-9897.2007.03.004
SHI Zhi-wei, GENG Cun-jie, MING Xiao. Experimental investigation on unsteady aerodynamics of rotor-blade airfoil[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3): 18-23.
doi: 10.3969/j.issn.1672-9897.2007.03.004
[1] Ze-jun WEN,Xiang-heng MENG,Zhao XIAO,Fan ZHANG. Sensitivity analysis of airfoil aerodynamic characteristics based on NT-net method and Morris method[J]. Chin J Eng Design, 2022, 29(4): 438-445.
[2] ZHANG Ai-yun, WANG Ji-hua, GAO Wei, ZHANG Mei-juan. Design of VVT engine rotor defect detection system based on machine vision[J]. Chin J Eng Design, 2021, 28(6): 776-784.
[3] WU Guo-pei, YU Yin-quan, TU Wen-bing. Review of research on fault diagnosis of permanent magnet synchronous motor[J]. Chin J Eng Design, 2021, 28(5): 548-558.
[4] HUANG Xiang-long, YIN Feng, LI Yan-yan, WANG Wen-kai, ZHAO Si-bo. Simulation analysis and experimental study on load separation of rotor shaft with dynamic and static axis structure[J]. Chin J Eng Design, 2020, 27(2): 256-262.
[5] WANG Ai-lun, LIU Le, LIU Qing-ya. Research on strength reliability of pull rod combined rotor based on Kriging surrogate model[J]. Chin J Eng Design, 2019, 26(4): 433-440.
[6] YANG Wen-jun, HUI Li, ZHOU Song, MA Shao-hua, YUAN Hui-qun. Aerodynamic load analysis of compressor blade based on stator-rotor interaction effect[J]. Chin J Eng Design, 2018, 25(5): 567-575.
[7] LIU Qiang, WANG Ai-lun. Research on the whole fatigue damage of circumferential rod fastening rotor based on damage mechanics[J]. Chin J Eng Design, 2017, 24(5): 572-579.
[8] PAN Chun-rong, XU Hua. Design of X-type unmanned quadrotor based on STM32[J]. Chin J Eng Design, 2017, 24(2): 196-202,210.
[9] ZHANG Hai-biao, WANG Ai-lun. Research on performance degradation characteristic of combined rotor considering turbine discs creep[J]. Chin J Eng Design, 2016, 23(5): 417-423,452.
[10] YAO Ling-ling, HE Nai-bao, GAO Qian, SONG Wei. New adaptive discrete sliding mode control for the quad-rotor[J]. Chin J Eng Design, 2015, 22(6): 602-606.
[11] LI Xue-peng, WANG Ai-lun. Research on performance degradation of combined rotor considering the microcrack on the rod caused by frequent start-up and stop-down[J]. Chin J Eng Design, 2015, 22(2): 129-136.
[12] ZHANG Ying-ying,WANG Ai-lun,SU Yong-lei,ZENG Hai-nan. Effect of preload mistuning on dynamic characteristic and structural strength of combined rotors[J]. Chin J Eng Design, 2014, 21(6): 534-539.
[13] LI Xue-Peng, WANG Ai-Lun. Research on performance degradation of combined rotor considering the fatigue crack in the rod[J]. Chin J Eng Design, 2014, 21(4): 382-388.
[14] SU Yong-lei,WANG Ai-lun,LI Xue-peng,GAO Si-xiao, ZHANG Ying-ying. Effect of rod relaxation upon performance degradation of combined rotor for gas turbine[J]. Chin J Eng Design, 2014, 21(3): 245-250.
[15] GUO Yu-Xiu, NI Xiao-Hong, WANG Yu-Tian. Study on the fault diagnosis of rolling mills based
on the chaos weak signal detection method
[J]. Chin J Eng Design, 2011, 18(3): 218-221.