Whole Machine and System Design |
|
|
|
|
Development of dynamic test equipment for rotor airfoil in high speed wind tunnel |
Wei-guo ZHANG1( ),Guo-qiang LI2( ),Kui-hui SONG3,Xu YAN4,Liang-liang ZHAO3 |
1.School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China 2.College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China 3.Low Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China 4.Sichuan Tongren Precision Technology Co. , Ltd. , Mianyang 621000, China |
|
|
Abstract In order to make up for the deficiency of simulation ability and test accuracy of rotor airfoil dynamic test in high speed wind tunnel at domestic, based on the FL-20 continuous transonic wind tunnel, a method of dual-end synchronous driving rotor airfoil test model was proposed, and a dynamic test equipment for the high speed wind tunnel was designed. The equipment relied on the way of dual-balance dynamic load measurement combined with surface dynamic pressure measurement, which could improve the dynamic aerodynamic load measurement accuracy of rotor airfoil. The wind tunnel test results showed that: when the pitch oscillation amplitude of rotor airfoil test model was 10°, its oscillation frequency could reach 17 Hz, the test Mach number was 0.6, and the Reynolds number was 5×106, which was at the international leading level. The developed dynamic test equipment and its related test technology have high reliability, and the test data is reliable and its law is reasonable, which has the ability to carry out high speed wind tunnel dynamic test. It can provide important technical support for the research of rotor airfoil dynamic stall and the simulation of real helicopter test parameters.
|
Received: 27 October 2021
Published: 05 September 2022
|
|
Corresponding Authors:
Guo-qiang LI
E-mail: zwglxy@163.com;CARDCL@126.com
|
旋翼翼型高速风洞动态试验装置研制
为弥补国内在旋翼翼型高速风洞动态试验模拟能力和测试精度方面的不足,基于FL-20连续式跨音速风洞,提出采用双端同步驱动旋翼翼型试验模型的方式,设计了一套高速风洞动态试验装置。该装置依托双天平动态载荷测量结合表面动态压力测量的方式,可提高旋翼翼型动态气动载荷的测量精度。风洞试验结果显示:当旋翼翼型试验模型的俯仰振荡幅值为10°时,其振荡频率可达17 Hz,且试验马赫数为0.6,雷诺数达到5×106,处于国际领先水平。所研制的动态试验装置及其相关测试技术具有较高的可靠性,且试验数据可靠、规律合理,具备了开展高速风洞动态试验的能力,可为旋翼翼型动态失速问题的研究以及真实直升机试验参数的模拟提供重要的技术支撑。
关键词:
旋翼,
翼型,
高速风洞,
动态失速,
试验装置
|
|
[1] |
LEISHMAN J G. Principles of helicopter aerodynamics[M]. 2nd ed. New York: Cambridge University Press, 2006: 525-527.
|
|
|
[2] |
李国强,张卫国,陈立,等.风力机叶片翼型动态试验技术研究[J].力学学报,2018,50(4):751-765. doi:10.6052/0459-1879-18-108 LI Guo-qiang, ZHANG Wei-guo, CHEN Li, et al. Research on dynamic test technology for wind turbine blade airfoil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 751-765.
doi: 10.6052/0459-1879-18-108
|
|
|
[3] |
NEGI P S, HANIFI A, HENNINGSON D S. Unsteady response of natural laminar flow airfoil undergoing small-amplitude pitch oscillations[J]. AIAA Journal, 2021, 59(8): 2868-2877. doi:10.2514/1.j059743
doi: 10.2514/1.j059743
|
|
|
[4] |
马奕扬,招启军,赵国庆.基于后缘小翼的旋翼翼型动态失速控制分析[J].航空学报,2017,38(3):120312. doi:10.7527/S1000-6893.2016.0220 MA Yi-yang, ZHAO Qi-jun, ZHAO Guo-qing, et al. Dynamic stall control of rotor airfoil via trailing-edge flap[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 120312.
doi: 10.7527/S1000-6893.2016.0220
|
|
|
[5] |
喻伯平,李高华,谢亮,等.基于代理模型的旋翼翼型动态失速优化设计[J].浙江大学学报(工学版),2020,54(4):833-842. doi:10.3785/j.issn.1008-973X.2020.04.023 YU Bo-ping, LI Gao-hua, XIE Liang, et al. Dynamic stall optimization design of rotor airfoil based on surrogate model[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(4): 833-842.
doi: 10.3785/j.issn.1008-973X.2020.04.023
|
|
|
[6] |
QIU Zhan, WANG Fu-xin. Aeroelastic responses of airfoil under dynamic stall forced to oscillate by cyclic pitch input[J]. Journal of Sound and Vibration, 2020, 479: 115366. doi:10.1016/j.jsv.2020.115366
doi: 10.1016/j.jsv.2020.115366
|
|
|
[7] |
戴玉婷,严慧,王林鹏.基于非线性气动力的失速颤振计算与试验研究[J].工程力学,2020,37(8):230-236. doi:10.6052/j.issn.1000-4750.2019.03.0141 DAI Yu-ting, YAN Hui, WANG Lin-peng. Calculation and experimental study of stall flutter based on nonlinear aerodynamics[J]. Engineering Mechanics, 2020, 37(8): 230-236.
doi: 10.6052/j.issn.1000-4750.2019.03.0141
|
|
|
[8] |
张庆,叶正寅.NACA0012翼型跨声速强迫运动非定常气动力模型[J].哈尔滨工程大学学报,2020,41(11):1683-1688. doi:10.11990/jheu.201903018 ZHANG Qing, YE Zheng-yin. Unsteady aerodynamic model of NACA0012 associated with forced oscillations and translations in transonic flight[J]. Journal of Harbin Engineering University, 2020, 41(11): 1683-1688.
doi: 10.11990/jheu.201903018
|
|
|
[9] |
RICHTER K, KOCH S, GARDNER A D, et al. Experimental investigation of unsteady transition on a pitching rotor blade airfoil[J]. Journal of the American Helicopter Society, 2014, 59(1): 12001(1)-12001(12). doi:10.4050/jahs.59.012001
doi: 10.4050/jahs.59.012001
|
|
|
[10] |
REINERT T, FLEMMING R J, NARDUCCI R, et al. Oscillating airfoil icing tests in the NASA Glenn Research Center Icing Research Tunnel[C]//SAE 2011 International Conference on Aircraft and Engine Icing and Ground Deicing, Chicago, Jun. 13-17, 2011.
|
|
|
[11] |
LE PAPE A, PAILHAS G, DAVID F, et al. Extensive wind tunnel tests measurements of dynamic stall phenomenon for the OA209 airfoil including 3D effects[C]//Proceedings of the 33rd European Rotorcraft Forum, Kazan, Sept. 11-13, 2007.
|
|
|
[12] |
MERRILL B E, PEET Y T. Effect of impinging wake turbulence on the dynamic stall of a pitching airfoil[J]. AIAA Journal, 2017, 55(12): 4094-4112. doi:10.2514/1.J055405
doi: 10.2514/1.J055405
|
|
|
[13] |
DEHKORDI M H R, SOLTANI M R, DAVARI A R. Statistical analysis on the effect of reduced frequency on the aerodynamic behavior of an airfoil in dynamic physical motions[J]. Physica A: Statistical Mechanics and its Applications, 2019, 535: 122450. doi:10.1016/j.physa.2019.122450
doi: 10.1016/j.physa.2019.122450
|
|
|
[14] |
GREEN R B, GILLIES E A, WANG Y. Trailing-edge flap flow control for dynamic stall[J]. The Aeronautical Journal, 2011, 115(1170): 493-503. doi:10.1017/s0001924000006138
doi: 10.1017/s0001924000006138
|
|
|
[15] |
SAMARA F, JOHNSON D A. Dynamic stall on pitching cambered airfoil with phase offset trailing edge flap[J]. AIAA Journal, 2020, 58(7): 2844-2856. doi:10.2514/1.J059115
doi: 10.2514/1.J059115
|
|
|
[16] |
CASTAEDA D, WHITING N, WEBB N, et al. An experimental investigation of deep dynamic stall control using plasma actuators[J]. Experiments in Fluids, 2022, 63: 69. doi:10.1007/s00348-022-03421-w
doi: 10.1007/s00348-022-03421-w
|
|
|
[17] |
张卫国,武杰,兰波,等.旋翼翼型低速风洞静、动态试验技术研究[C]//中国力学大会‒2015论文摘要集.上海:中国力学学会,2015:242. ZHANG Wei-guo, WU Jie, LAN Bo, et al. Static and dynamic test technology for rotor airfoil low speed wind tunnel[C]//Proceedings of the Chinese Congress of Theoretical and Applied Mechanics (CCTAM 2015). Shanghai: Chinese Society of Theoretical Applied Mechanics, 2015: 242.
|
|
|
[18] |
许和勇,邢世龙,叶正寅,等.基于充气前缘技术的旋翼翼型动态失速抑制[J].航空学报,2017,38(6):120799. doi:10.7527/S1000-6893.2016.0308 XU He-yong, XING Shi-long, YE Zheng-yin, et al. Dynamic stall suppression for rotor airfoil based on inflatable leading edge technology[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120799.
doi: 10.7527/S1000-6893.2016.0308
|
|
|
[19] |
王莹,高超,吕哲.跨声速风洞翼型动态失速试验系统研制[J].科学技术与工程,2018,18(32):95-103. doi:10.3969/j.issn.1671-1815.2018.32.016 WANG Ying, GAO Chao, Zhe LÜ. The development of airfoil dynamic stall experiment system in a transonic wind tunnel[J]. Science Technology and Engineering, 2018, 18(32): 95-103.
doi: 10.3969/j.issn.1671-1815.2018.32.016
|
|
|
[20] |
史志伟,耿存杰,明晓.旋翼翼型俯仰沉浮运动非定常气动特性实验研究[J].实验流体力学,2007,21(3):18-23. doi:10.3969/j.issn.1672-9897.2007.03.004 SHI Zhi-wei, GENG Cun-jie, MING Xiao. Experimental investigation on unsteady aerodynamics of rotor-blade airfoil[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3): 18-23.
doi: 10.3969/j.issn.1672-9897.2007.03.004
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|