Please wait a minute...
Chinese Journal of Engineering Design  2018, Vol. 25 Issue (5): 567-575    DOI: 10.3785/j.issn.1006-754X.2018.05.011
    
Aerodynamic load analysis of compressor blade based on stator-rotor interaction effect
YANG Wen-jun1, HUI Li1,2, ZHOU Song2, MA Shao-hua1,2, YUAN Hui-qun3
1. School of Mechatronics Engineering, Shenyang Aerospace University, Shenyang 110136, China;
2. State Key Laboratory for Aviation Digital Manufacturing Process, Shenyang Aerospace University, Shenyang 110136, China;
3. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
Download: HTML     PDF(4974KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Due to the interaction of stator-rotor blade rows, the compressor internal flow field is unsteady and complex. In order to further research on the characteristics of compressor blade aerodynamic load, an aero-engine compressor is selected as the research object. Based on the stator-rotor interaction effect between blade rows, the three-dimensional flow field of the whole blade-disk was simulated by sliding mesh. Then, the internal flow law of compressor rotor in the interference period Tb was solved and the unsteady aerodynamic load on the compressor blade was analyzed, and the effect of different pressure ratios and rotational speeds on the blade aerodynamic load was discussed. The results showed that dominant pulsation frequencies of the peak value of aerodynamic load on blade pressure and suction surfaces were mainly at frequency doubling of stator-rotor interaction, especially at one time frequency (1×f0). Within the interaction period Tb, pressure vortexes of blade surface transmitted and dissipated periodically, and the variation of aerodynamic load on pressure and suction surfaces took the opposite trend. The magnitude of aerodynamic load increased with the pressure ratio, but the pulsation amplitude and the peak value were basically unchanged. The increase of rotational speed made the frequency of stator-rotor interaction much higher, and enhanced the unsteady characteristic of aerodynamic load. The results can be applied to aerodynamic optimization design of the blade-disk structure, which can provide support and reference for the development of high performance aero-engine compressor.



Key wordscompressor blade      stator-rotor interaction      unsteady flow field      aerodynamic load      frequency analysis     
Received: 07 March 2018      Published: 28 October 2018
CLC:  V231.3  
Cite this article:

YANG Wen-jun, HUI Li, ZHOU Song, MA Shao-hua, YUAN Hui-qun. Aerodynamic load analysis of compressor blade based on stator-rotor interaction effect. Chinese Journal of Engineering Design, 2018, 25(5): 567-575.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2018.05.011     OR     https://www.zjujournals.com/gcsjxb/Y2018/V25/I5/567


基于转静干涉效应的压气机叶片气动载荷分析

转静叶排的相互作用会使压气机内部流场存在复杂的非定常性。为深入研究压气机叶片的气动载荷特性,以某型航空发动机压气机为研究对象,考虑叶排间的转静干涉效应,利用滑移网格技术对整个叶盘的三维流场展开模拟,求解干涉周期Tb内压气机转子内部的流动规律。同时对叶片气动载荷的非定常特性进行进一步分析,讨论了不同压比、转速对压气机叶片气动载荷的影响。结果表明叶片压力面和吸力面气动载荷波动峰值的主导频率皆为转静干涉频率f0的倍频,其中一倍频(1×f0)分量占主导地位。在干涉周期Tb内,叶片表面压力涡发生周期性的迁移与耗散,压力面和吸力面气动载荷的变化呈相反趋势。随着压比的增加,压气机叶片气动载荷逐渐增大,但其脉动幅值和频谱峰值基本不变。转速的升高使得转静干涉的频率增大,增强了压气机叶片气动载荷的非定常特性。研究结果能够应用于叶盘结构的气动优化设计,可为高性能航空发动机压气机的研制提供支持和参考。


关键词: 压气机叶片,  转静干涉,  非定常流场,  气动载荷,  频谱分析 
[[1]]   SLUTSKY S, FISCHER D, ERDOS J I. Computation of unsteady transonic flows through rotating and stationary cascades[R]. New York:Advanced Technology Laboratory Incorporation, Nov. 1, 1977.
[[2]]   GUNDY-BURLET K L. Unsteady two-and three-dimensional Navier-Stokes simulations of multistage turbomachinery flows[J]. Computing Systems in Engineering, 1992, 3(1/4):231-240.
[[3]]   陈矛章,彭波.用可压缩流涡方法模拟叶轮机动静叶的相互作用[J].中国工程科学,2000,2(2):15-23. CHEN Mao-zhang, PENG Bo. Numerical simulation of rotor/stator interaction in turbomachinery by use of a disturbance vortex method for compressible flow[J]. Engineering Science, 2000, 2(2):15-23.
[[4]]   ERNST M, MICHEL A, JESCHKE P. Analysis of rotor-stator-interaction and blade-to-blade measurements in a two stage axial flow compressor[J]. Journal of Turbomachinery, 2010, 133(1):011027-011027-12.
[[5]]   SENTKER A, RIESS W. Experimental investigation of turbulent wake-blade interaction in axial compressors[J]. International Journal of Heat and Fluid Flow, 2000, 21(3):285-290.
[[6]]   GORRELL S E, OKⅡSHI T H, COPENHAVER W W. Stator-rotor interactions in a transonic compressor-Part 1:effect of blade-row spacing on performance[J]. Journal of Turbomachinery, 2003, 125(2):328-335.
[[7]]   GUO Shuang, CHEN Shao-wen, SONG Yan-ping, et al. Effects of boundary layer suction on aerodynamic performance in a high-load compressor cascade[J]. Chinese Journal of Aeronautics, 2010, 23(2):179-186.
[[8]]   毛明明,宋彦萍,王仲奇.跨声压气机动静干涉效应的数值研究[J].航空动力学报,2007,22(9):1468-1474. MAO Ming-ming, SONG Yan-ping, WANG Zhong-qi. Numerical research on influence of rotor-stator interactions in transonic compressor[J]. Journal of Aerospace Power, 2007, 22(9):1468-1474.
[[9]]   赵养正,刘前智.考虑压气机动静干涉效应的非设计工况性能数值模拟术[J].推进技术,2006,27(5):422-425. ZHAO Yang-zheng, LIU Qian-zhi. Numerical simulations of compressor off-design performances with rotor-stator interaction[J]. Journal of Propulsion Technology, 2006, 27(5):422-425.
[[10]]   王英锋,胡骏,罗标能,等.上游叶片尾迹对转子叶片非定常表面压力频谱特性影响的研究[J].航空动力学报,2006,21(4):693-699. WANG Ying-feng, HU Jun, LUO Biao-neng, et al. Effects of the up-stream blade wakes on the spectrum of rotor blade unsteady surface pressure[J]. Journal of Aerospace Power, 2006, 21(4):693-699.
[[11]]   KULISA P, DANO C. Numerical simulation of unsteady blade row interactions induced by passing wakes[J]. European Journal of Mechanics-B/Fluids, 2006, 25(3):379-392.
[[12]]   汪松柏,李绍斌,宋西镇.转静干涉对跨声速压气机叶片静气动弹性的影响[J].推进技术,2017,38(2):341-347. WANG Song-bai, LI Shao-bin, SONG Xi-zhen. Effects of rotor-stator interaction on static aeroelasticity of a transonic compressor blade[J]. Journal of Propulsion Technology, 2017, 38(2):341-347.
[[13]]   GNESIN V I, KOLODYAZHNAYA L V, RZADKOWSKI R. A numerical modelling of stator-rotor interaction in a turbine stage with oscillating blades[J]. Journal of Fluids and Structures, 2004, 19(8):1141-1153.
[[14]]   BEHESHTI B H, TEIXEIRA J A, IVEY P C, et al. Parametric study of tip clearance-casing treatment on performance and stability of a transonic axial compressor[J]. Journal of Turbomachinery, 2004, 126(4):527-535.
[[15]]   MISCHO B, BURDET A, ABHARI R S. Influence of stator-rotor interaction on the aerothermal performance of recess blade tips[J]. Journal of Turbomachinery, 2010, 133(1):011023-011023-11.
[[16]]   LAUNDER B E, SPALDING D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2):269-289.
[[17]]   LAUNDER B, PONCET S, SERRE E. Laminar, transitional, and turbulent flows in rotor-stator cavities[J]. Annual Review of Fluid Mechanics, 2010, 42(1):229-248.
[[18]]   HOFF D. Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data[J]. Journal of Differential Equations, 1995, 120(1):215-254.
[[19]]   ADAMCZYK J J. Aerodynamic analysis of multistage turbomachinery flows in support of aerodynamic design[J]. Journal of Turbomachinery, 1999, 122(2):189-217.
[1] GUAN Xin, SUN Zhi-Li, BI Xiao-Guo, WEI Yun-Gang, LIU Xu-Dong. Variation of aerodynamic load engineering analysis during wind turbine run[J]. Chinese Journal of Engineering Design, 2012, 19(6): 440-444.
[2] WANG Tao, GAO Zhi, YE Jian-Min, HU Xiu-Liang. Design and research on hydraulic coke cutting monitoring system[J]. Chinese Journal of Engineering Design, 2010, 17(2): 146-150.