|
|
Sensitivity analysis of rotation frame stability based on BP neural network |
TANG Lin, XU Zhi-pei, HE Tian-long, AO Wei-chuan |
School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China |
|
|
Abstract The rotation frame is a key component of the amusement equipment. The natural frequency and buckling strength of the rotation frame have a direct impact on the stability of the structure. Finite element software ANSYS Workbench was used to establish a finite element model of the rotation frame. The natural frequency that had the most significant influence on the rotation frame was obtained through the modal analysis and harmonic response analysis. The buckling eigenvalue when the structure was unstable was obtained through buckling stability analysis. Then 140 test points were obtained by using the experimental design. In order to explore the sensitivity of various design variables to the natural frequency and buckling strength of the rotation frame, a BP(back propagation) neural network mathematical model was established through MATLAB software to fit test points. Combining the use of Isight and MATLAB, a descriptive Monte Carlo sampling method was used to numerically simulate the neural network model. The research results showed that the most dangerous modes that had a significant influence on the stability of rotation frame were the 10th to 12th modes. The result of parameter sensitivity analysis indicated that the parameters which had a mainly affect on the rotation frame dangerous modal frequencies were the limb wall thickness, limb section length and limb section width, in addition, the structure parameters which had the most significant influence on the structural buckling stability were six dimensional parameters of the slewing shank, the web, and the circular plate. The conclusion shows that the reasonable improvement of a part of design parameters that effect on the stability of the rotation frame will effectively improve the structural stability and design efficiency. This will provide a certain reference for the subsequent design improvement and optimization of the structure.
|
Received: 06 May 2018
Published: 28 October 2018
|
|
基于BP神经网络的转动架稳定性灵敏度分析
转动架作为某型游乐设备的关键部件,其固有频率和屈曲强度直接关系着结构的稳定性。运用有限元软件ANSYS Workbench建立转动架的有限元模型,通过模态分析和谐响应分析得到对转动架振动影响最为显著的固有频率,通过屈曲稳定性分析得到转动架失稳时的屈曲特征值,并运用试验设计获得140个样本点。为探索各个设计参数对转动架固有频率和屈曲强度的灵敏度,运用MATLAB软件建立BP(back propagation,反向传播)神经网络数学模型并对样本点进行拟合,再通过Isight与MATLAB的集成应用,利用描述性蒙特卡洛抽样法对神经网络模型进行数值模拟。结果表明:对转动架稳定性影响较大的危险模态主要是第10至第12阶模态;对转动架危险模态频率影响较大的主要是肢杆壁厚度、肢杆截面长度和肢杆截面宽度,而对转动架屈曲稳定性影响较为明显的则是肢杆、腹杆和圆板的6个尺寸参数。研究结果表明,合理地改善对转动架稳定性影响较大的设计参数将有效地提升其稳定性和设计效率,这可为该结构的后续设计和优化提供一定的借鉴和参考。
关键词:
转动架,
稳定性,
BP神经网络,
蒙特卡洛,
灵敏度
|
|
[[1]] |
王新刚,张义民,王宝艳.机械零部件的动态可靠性灵敏度分析[J].机械工程学报,2010,46(10):188-193. WANG Xin-gang, ZHANG Yi-min, WANG Bao-yan. Dynamic reliability sensitivity analysis of mechanical components[J]. Journal of Mechanical Engineering, 2010, 46(10):188-193.
|
|
|
[[2]] |
张峰,杨旭锋,刘永寿,等.飞机起落架缓冲器参数可靠性灵敏度分析[J].振动工程学报,2015,28(1):67-72. ZHANG Feng, YANG Xu-feng, LIU Yong-shou, et al. Reliability parameter sensitivity analysis for aircraft landing gear shock absorber[J]. Journal of Vibration Engineering, 2015, 28(1):67-72.
|
|
|
[[3]] |
张春来.具有柔性支撑的起重机臂架结构稳定分析方法研究[D].哈尔滨:哈尔滨工业大学机电工程学院,2017:49-53. ZHANG Chun-lai. Research on stability analysis method of crane jib structure with flexible support[D]. Harbin:Harbin Institute of Technology, School of Mechatronics Engineering, 2017:49-53.
|
|
|
[[4]] |
李欣,裴朋超.桁架臂的稳定性灵敏度分析与优化[J].建设机械技术与管理,2017(3):81-85. LI-Xin, PEI Peng-chao. Analysis and optimization of stability sensitivity for the lattice jib[J]. Construction Machinery Technology & Management, 2017(3):81-85.
|
|
|
[[5]] |
申士林.类椭圆截面伸缩臂接触非线性分析及结构轻量化技术研究[D].成都:西南交通大学机械工程学院,2013:31-38. SHEN Shi-lin. Nonlinearcontact analysis of similar-oval jib and research of structural lightweight technique[D]. Chengdu:Southwest Jiaotong University, School of Mechanical Engineering, 2013:31-38.
|
|
|
[[6]] |
胡波,许志沛,吴永明,等.基于神经网络的桑巴塔回转架参数灵敏度分析[J].机械设计与制造,2017(S1):149-152. HU-Bo, XU Zhi-pei, WU Yong-ming, et al. Parameter sensitivity analysis of rotary frame of the Samba tower based on artificial neural network[J]. Machinery Design & Manufacture, 2017(S1):149-152.
|
|
|
[[7]] |
李文涛.大型游乐设备——"桑巴塔"的回转架力学特性研究[D].成都:西南交通大学机械工程学院,2016:11-13. LI Wen-tao. The research of mechanical properties of Samba tower rotary frame-large amusement equipment[D]. Chengdu:Southwest Jiaotong University, School of Mechanical Engineering, 2016:11-13.
|
|
|
[[8]] |
李永奎,韩美玲.基于SolidWorks-Motion大型回转游乐设备动力学仿真分析[J].机械设计与制造,2016(3):51-53. LI Yong-kui, HAN Mei-ling. Based on SolidWork-Motion large rotary amusement equipment dynamic simulation analysis[J]. Machinery Design & Manufacture,2016(3):51-53.
|
|
|
[[9]] |
吴迪,武岳,杨庆山,等.大跨屋盖结构风振响应参数灵敏度分析[J].工程力学,2015,32(2):171-177. WU Di, WU Yue, YANG Qing-shan, et al. Parameter sensitivity analysis of wind-induced response of long-span proofs[J]. Engineering Mechanics, 2015, 32(2):171-177.
|
|
|
[[10]] |
李惠林,周兵兵,刘倩,等.载重货车驱动桥壳谐响应分析[J].机械设计与制造,2013(9):101-106. LI Hui-lin, ZHOU Bing-bing, LIU Qian, et al. Harmonic response analysis for heavy-duty lorry drive axle housing[J]. Machinery Design & Manufacture, 2013(9):101-106.
|
|
|
[[11]] |
苏少普,陈先民,董登科.含凸台连接整体加筋壁板结构的稳定性分析[J].机械设计,2015,32(8):57-61. SU Shao-pu, CHEN Xian-min, DONG Deng-ke. Buckling analysis of integral stiffened panels with filleted junction[J]. Journal of Machine Design, 2015, 32(8):57-61.
|
|
|
[[12]] |
邓乾旺,文文.基于拉丁超立方抽样的薄板装配误差分析[J].中国机械工程,2012,23(8):947-951. DENG Qian-wang, WEN Wen. Sheet metal assembly deviation analysis based on Latin hypercube sampling[J].China Mechanical Engineering, 2012, 23(8):947-951.
|
|
|
[[13]] |
喻曦.基于人工神经网络的舰船灵敏度分析[J].舰船科学技术,2015,37(3):147-150. YU Xi. Parametric sensitivity analysis of ships based on neural network[J]. Ship Science and Technology, 2015, 37(3):147-150.
|
|
|
[[14]] |
何琴淑,杨玉明,肖世富.参数概率灵敏度分析的神经网络方法及其应用[J].计算力学学报,2011,28(S1):29-32. HE Qin-shu, YANG Yu-ming, XIAO Shi-fu. Neural network method in parametric probabilistic sensitivity analysis and its application[J]. Chinese Journal of Computational Mechanics, 2011, 28(S1):29-32.
|
|
|
[[15]] |
张雷.基于神经网络技术的结构可靠性分析与优化设计[D].长春:吉林大学机械工程学院,2004:19-22. ZHANG Lei. Neural network-based structure reliability and optimization design[D]. Changchun:Jilin University, School of Mechanical Engineering, 2004:19-22.
|
|
|
[[16]] |
南东雷,贾志新,李威.三参数威布尔分布的蒙特卡洛点估计方法[J].机械设计与制造,2017(1):142-144. NAN Dong-lei, JIA Zhi-xin, LI Wei. Monte Carlo based parametric point estimation for three parameter Weibull distribution[J]. Machinery Design & Manufacture, 2017(1):142-144.
|
|
|
[[17]] |
AHAMMED M, MELCHERS R E. Gradient and parameter sensitivity estimation for systems evaluated using Monte Carlo analysis[J]. Reliability Engineering and System Safety, 2006, 91(5):594-601.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|