The thermal error of spindle system is the important influencing factor for the machining accuracy of CNC (computerized numerical control) machine tool. Inspired by wing vein structure of insects in natural word, a new type of cooling structure for spindle system was designed based on lepidoptera insect wing vein bionic channel. Based on the numerical heat transfer correlation theory, the cooling structure model of insect wing vein bionic channel was established, and then the simulation of spiral channel and insect wing vein bionic channel was analyzed comparatively through fluid-structure interaction of the finite element software Fluent. The result showed that the heat dissipation effects and flow characteristics of insect wing vein bionic channel were better than spiral channel's. Under the same boundary conditions, the maximum flow velocity of the coolant was about 1.839 m/s, the pressure drop between the inlet and outlet was 3 181 Pa, the maximum temperature of the heating surface was reduced about 17.8%, the minimum temperature of the heating surface was reduced about 4.6%, and the temperature field of the cooling structure was more even. Those results provide a reference for the thermal design of cooling structure for CNC machine tool spindle system.
DENG Xiao-lei, PANG Shi-jie, LI Rui-qi, ZHOU Yi-bo, WANG Jian-chen, FU Jian-zhong. Thermal design of cooling structure for CNC machine tool spindle system based on insect wing vein bionic channel. Chinese Journal of Engineering Design, 2018, 25(5): 583-589.
MAYR J, JEDRZEJEWSKI J, UHLMANN E, et al. Thermal issues in machine tools[J]. CIRP Annals-Manufacturing Technology, 2012, 61(2):771-791.
[[2]]
邓小雷.数控机床主轴系统热态特性分析技术[M].杭州:浙江大学出版社,2017:1-64. DENG Xiao-lei. Analysis techniques of thermal characteristics for CNC machine tool spindle system[M]. Hangzhou:Zhejiang University Press, 2017:1-64.
[[3]]
ABELE E, ALTINTAS Y, BRECHER C. Machine tool spindle units[J]. CIRP Annals-Manufacturing Technology, 2010, 59(2):781-802.
[[4]]
邓小雷,林欢,王建臣,等.机床主轴热设计研究综述[J].光学精密工程,2018,26(6):1415-1429. DENG Xiao-lei, LIN Huan, WANG Jian-chen, et al. Review on thermal design of machine tool spindles[J]. Optics and Precision Engineering, 2018, 26(6):1415-1429.
[[5]]
CHIENC H, JANG J Y. 3-D numerical and experimental analysis of a built-in motorized high-speed spindle with helical water cooling channel[J]. Applied Thermal Engineering, 2008, 28(17):2327-2336.
[[6]]
SLEITIA K. Heat transfer and pressure drop through rectangular helical ducts[J]. Journal of Renewable & Sustainable Energy, 2011, 3(4):681-197.
[[7]]
陈文华,贺青川,何强,等.高速电主轴水冷系统三维仿真与试验分析[J].中国机械工程,2010,21(5):550-555. CHEN Wen-hua, HE Qing-chuan, HE Qiang, et al. Simulation and experimental analysis for high-speed spindle with water-cooling system[J]. Journal of Mechanical Engineering, 2010, 21(5):550-555.
[[8]]
王可,刘继行,孙兴伟.螺旋水套与轴向水套水冷系统流固耦合对比分析[J].组合机床与自动化加工技术,2014(11):46-48. WANG Ke, LIU Ji-xing, SUN Xing-wei. Comparative fluid-solid coupling analysis of spiral channel and axial channel water cooling system[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2014(11):46-48.
[[9]]
ZHANG C, CHEN Y, WU R, et al. Flow boiling in constructal tree-shaped minichannel network[J]. International Journal of Heat & Mass Transfer, 2011, 54(1):202-209.
[[10]]
徐尚龙,郭宗坤,秦杰,等.树形微通道热沉仿生建模及三维热流特性数值分析[J].中国机械工程,2014,25(9):1185-1188. XU Shang-long, GUO Zong-kun, QIN Jie, et al. Three dimensional numerical simulation of fluid flow and heat transfer in tree-shaped microchannels[J]. China Mechanical Engineering, 2014, 25(9):1185-1188.
[[11]]
徐尚龙,秦杰,胡广新.芯片冷却用微通道散热结构热流耦合场数值研究[J].中国机械工程,2011,22(23):2863-2866. XU Shang-long, QIN Jie, HU Guang-xin. Numerical study on heat-flow coupling field in microchannel heat sink structures for electronic chip cooling[J]. China Mechanical Engineering, 2011, 22(23):2863-2866.
[[12]]
XIA C, FU J, LAI J, et al. Conjugate heat transfer in fractal tree-like channels network heat sink for high-speed motorized spindle cooling[J]. Applied Thermal Engineering, 2015, 90:1032-1042.
[[13]]
夏晨晖.数控机床主轴温升特性快速辨识方法及新型温控结构的研究[D].杭州:浙江大学机械工程学院,2015:99-127. XIA Chen-hui. Research on fast identification method for machine tool spindle temperature rise characteristics and a novel cooling structure design[D]. Hangzhou:Zhejiang University, School of Mechanical Engineering, 2015:99-127.
[[14]]
傅建中,夏晨晖,贺永,等.一种基于分形流道的冷却套及电主轴:ZL201210334517.5[P].2015-07-29. FU Jian-zhong, XIA Chen-hui, HE Yong, et al. An electric spindle and its cooling sleeve based on a fractal flow channel:ZL201210334517.5[P]. 2015-07-29.
[[15]]
秦杰.仿生微流道散热器结构优化及流动散热特性研究[D].成都:电子科技大学机械电子与工程学院,2012:1-33. QIN Jie. Study on the structure optimization and flow heat dissipation characteristics of bionic microchannel[D]. Chengdu:University of Electronic Science and Technology, School of Mechanical and Electronic Engineering, 2012:1-33.
[[16]]
彭立印.柴油机缸内流体流动数值分析[D].成都:西南交通大学机械工程学院,2007:6-14. PENG Li-yin. Numerical analysis of airflow field in cylingder of disel engine[D]. Chengdu:Southwest Jiaotong University, School of Mechanical Engineering, 2007:6-14.
[[17]]
陶文铨.数值传热学[M].西安:西安交通大学出版社,2001:1-10. TAO Wen-quan. Numerical heat transfer[M]. Xi'an:Xi'an Jiaotong University Press, 2001:1-10.