Please wait a minute...
Chinese Journal of Engineering Design  2020, Vol. 27 Issue (2): 256-262    DOI: 10.3785/j.issn.1006-754X.2020.00.027
Modeling, Simulation, Analysis, and Decision     
Simulation analysis and experimental study on load separation of rotor shaft with dynamic and static axis structure
HUANG Xiang-long1, YIN Feng1, LI Yan-yan2, WANG Wen-kai1, ZHAO Si-bo1
1.Hunan Aviation Powerplant Research Institute, Aero Engine Corporation of China, Zhuzhou 412002, China;
2.Department of Architecture Decoration,Hunan Technician College of Industry and Commerce, Zhuzhou 412000, China
Download: HTML     PDF(1420KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Rotor shaft with dynamic and static axis structure is a new type of rotor shaft configuration with anti-ballistic capability for the helicopter. It is planned to study the load separation characteristics of independently designed drum-shaped spline rotor shaft and flexible coupling rotor shaft with dynamic and static axis structure. Through the finite element software, the load separation coefficients of two kinds of rotor shafts with dynamic and static axis structures were simulated, and the verifiable multi-channel loading tests were carried out. The results showed that when the wall thickness of static shaft was 7 mm, the load separation coefficient of rotor shaft with dynamic and static axis structure was significantly higher than that when the wall thickness of static shaft was 4 mm.The comprehensive load separation coefficient of flexible coupling rotor shaft with dynamic and static axis structure was 77.37%, which was slightly higher than that of drum-shaped spline rotor shaft with dynamic and static axis structure. The research results provide guidance for the design of rotor shaft with dynamic and static axis structure in the helicopters.

Key wordsdynamic and static axis structure      rotor shaft      load separation      multi-channel      loading test     
Received: 18 March 2019      Published: 28 April 2020
CLC:  V 219  
Cite this article:

HUANG Xiang-long, YIN Feng, LI Yan-yan, WANG Wen-kai, ZHAO Si-bo. Simulation analysis and experimental study on load separation of rotor shaft with dynamic and static axis structure. Chinese Journal of Engineering Design, 2020, 27(2): 256-262.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2020.00.027     OR     https://www.zjujournals.com/gcsjxb/Y2020/V27/I2/256


动静轴结构旋翼轴载荷分离仿真分析与试验研究

动静轴结构旋翼轴是一种具有抗弹击能力的新型直升机旋翼轴构型,拟对自主设计的鼓形花键动静轴结构旋翼轴和柔性联轴节动静轴结构旋翼轴进行载荷分离特性研究。利用有限元软件对这2种动静轴结构旋翼轴的载荷分离系数进行仿真分析,并开展多通道加载试验加以验证。结果表明采用7 mm壁厚静轴时动静轴结构旋翼轴的载荷分离系数相比采用4 mm壁厚静轴时明显提高;柔性联轴节动静轴结构旋翼轴的综合载荷分离系数为77.37%,略高于鼓形花键动静轴结构旋翼轴的76.33%。研究结果可为直升机动静轴结构旋翼轴的设计提供指导。

关键词: 动静轴结构,  旋翼轴,  载荷分离,  多通道,  加载试验 
[1] 潘光奇,朱勇.直升机传动系统现状和发展综述[J]. 舰船电子工程,2009,29(11):33-36,39. doi: 10.3969/j.issn.1627-9730.2009.11.009 PANGuang-qi, ZHUYong. Present situation and development summarization of the helicopter transmission system[J]. Ship Electronic Engineering, 2009, 29(11): 33-36, 39.
[2] 王卫刚.直升机传动系统设计方法研究[D].南京:南京航空航天大学航空学院,2011:10-30. doi:10.7666/d.d166411 WANGWei-gang. Research on design method of helicopter transmission system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, College of Aerospace Engineering, 2011:10-30.
[3] 陈铭,徐冠峰,张磊.直升机传动系统和旋翼系统关键技术[J].航空制造技术,2010(16):32-37. doi: 10.3969/j.issn.1671-833X.2010.16.003 CHENMing, XUGuan-feng, ZHANGLei. Key technology of transmission system and rotor system of helicopter[J]. Aeronautical Manufacturing Technology, 2010(16): 32-37.
[4] 荚淑萍.AH-64A机身结构设计及其验证[J].直升机技术,1994(3):21-29. JIAShu-ping. Airframe design and demonstration of AH-64A helicopter[J]. Helicopter Technology,1994(3): 21-29.
[5] W.约翰逊,孙如林,高义中,等.直升机理论[M].北京:航空工业出版社,1991:110-116. JOHNSONW, SUNRu-lin, GAOYi-zhong, et al. Helicopter theory[M]. Beijing: Aviation Industry Press, 1991: 110-116.
[6] 张呈林,郭才根.直升机总体设计[M].北京:航空工业出版社,2006:75-110. ZHANGCheng-lin, GUOCai-gen. Overall helicopter design[M]. Beijing: Aviation Industry Press, 2006: 75-110.
[7] 陈康,刘建新.直升机结构与系统(ME-TH,PH)[M].北京:清华大学出版社,2016:65-73. CHENKang, LIUJian-xin. Helicopter structure and system (ME-TH,PH)[M].Beijing: Tsinghua University Press, 2016: 65-73.
[8] 陈怡枢.直升机新技术和新概念飞行机[J].国际航空,2000(8): 21-26. CHENYi-shu. New helicopter technology and new concept aircraft[J]. International Aviation, 2000(8): 21-26.
[9] 徐新,曹喜金.世界军用直升机发展趋势[J].直升机技术,2009(3):131-135. doi: 10.3969/j.issn.1673-1220.2009.03.028 XUXin, CAOXi-jin. Development trend of military helicopters in the world[J]. Helicopter Technology, 2009(3): 131-135.
[10] 张呈林.未来直升机发展趋势[J].国防科技工业,2010(4):42-45. ZHANGCheng-lin. Future helicopter development trend[J]. National Defense Science and Technology Industry, 2010(4): 42-45.
[11] 孙之钊.直升机强度[M].北京:航空工业出版社, 1990:20-150. SUNZhi-zhao. Helicopter intensity[M]. Beijing: Aviation Industry Press,1990: 20-150.
[12] 吴重光.系统建模与仿真[M].北京:清华大学出版社, 2008:10-130. WUZhong-guang. System modeling and simulation[M]. Beijing: Tsinghua University Press, 2008: 10-130.
[13] 航空航天工业部科学技术研究院.直升机载荷手册[M].北京:航空工业出版社,1991:16-88. Institute of Science and Technology, Ministry of Aerospace Industry. Helicopter payload manual[M]. Beijing: Aviation Industry Press, 1991: 16-88.
[14] 马敬志,范汪明.某型无人直升机旋翼轴有限元分析[J].中国设备工程,2017(23):160-161. doi: 10.3969/j.issn.1671-0711.2017.23.079 MAJing-zhi, FANWang-ming. Finite element analysis of rotor shaft of an unmanned helicopter [J]. China Plant Engineering, 2017(23): 160-161.
[15] 黄珺,刘伟光,沈亚娟.考虑旋翼轴刚度的孤立旋翼固有特性计算[J].直升机技术,2007(3):58-60. doi: 10.3969/j.issn.1673-1220.2007.03.014 HUANGJun, LIUWei-guang, SHENYa-juan. Isolated rotor system dynamic characteristic analysis coupled to the rotor-shaft stiffness[J]. Helicopter Technique, 2007(3): 58-60.
[16] 张洪伟,高相胜,张庆余. ANSYS非线性有限元分析方法及范例应用[M].北京:中国水利水电出版社,2013,1-161. ZHANGHong-wei, GAOXiang-sheng, ZHANGQing-yu. ANSYS nonlinear finite element analysis method and case application[M]. Beijing: China Water Resources and Hydropower Press, 2013: 1-161.
[17] 李添良,周力,孙驹.锥齿轮减速器的有限元整体建模与分析[J].机械传动,2012,36(10):60-61. doi: 10.16548/j.issn.1004.2539.2012.10.022 LITian-liang, ZHOULi, SUNJu. Integrated finite element modeling and analysis on spiral bevel gear reducer[J]. Mechanical Transmission, 2012, 36(10): 60-61.
[18] 王泽峰,宋日晓. 有限元模拟电桥的直升机旋翼轴拉力与扭矩测量方法[J].科学技术与工程,2019,19(18):329-333. doi: 10.3969/j.issn.1671-1815.2019.18.050 WANGZe-feng, SONGRi-xiao. Measuring method of helicopter rotor-shaft thrust and torque based on finite element method analog bridge[J]. Science Technology and Engineering, 2019, 19(18): 329-333.
[19] 张文军,吕伯平.某型直升机旋翼轴载荷测试方法研究[J].计测技术,2006,26(1):42-43,51. doi: 10.3969/j.issn.1674-5795.2006.01.014 ZHANGWen-jun, Bo-pingLü. Research of testing method of rotor shaft loading of one type of helicopter[J]. Metrology & Measurement Technology, 2006, 26(1): 42-43, 51.
[20] 章海红,寇富军.直11旋翼轴载荷测试研究[J].直升机技术,2002(1):25-28. doi: 10.3969/j.issn.1673-1220.2002.01.007 ZHANGHai-hong, KOUFu-jun. Testing rotor shaft load for a Z11 helicopter [J]. Helicopter Technology, 2002(1): 25-28.
[1] WANG Heng, SUN Xiao-ming, SHAO Yan, XIAO Hou-kun, ZHANG Xiao-long. Research on tire temperature measurement system based on test bench[J]. Chinese Journal of Engineering Design, 2018, 25(5): 590-596.
[2] NI Jian, YANG Yu-li, XING Qiang, XU Hai-li. Design of multi-channel visual velocity measurement system based on LabVIEW[J]. Chinese Journal of Engineering Design, 2018, 25(2): 209-215.