Please wait a minute...
Chinese Journal of Engineering Design  2017, Vol. 24 Issue (1): 64-69    DOI: 10.3785/j.issn.1006-754X.2017.01.009
Modeling, Analysis, Optimization and Decision     
The simulation and analysis of ABS based on grey prediction and sliding mode variable structure
DENG Tao, LI Jun-ying, LUO Jun-lin, ZHOU Hao
School of Mechatronics & Automotive Engineering, Chongqing Jiaotong University, Chongqing 400074, China
Download: HTML     PDF(1714KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

To study the advance, real-time and robustness of ABS, the ABS integrated control algorithm based on grey prediction GM (1, 1) model and sliding mode variable structure was proposed, which combined grey prediction control and sliding mode variable structure control method. Then, the ABS integrated control algorithm simulation model was established to compare and analyze the data. The results showed that the grey prediction and sliding mode variable structure integrated control algorithm could make ABS running to be advanced function, and could short braking time and braking distance compared with single sliding mode or bang-bang control method. Furthermore, it also could relieve the defect of fluctuation caused by sliding mode variable control algorithm, and could enhance the quick response of ABS. So the grey prediction and sliding mode variable structure integrated control algorithm can improve response speed,real-time robustness and comfort.



Key wordsABS      grey prediction      sliding mode variable structure      simulation     
Received: 15 July 2016      Published: 28 February 2017
CLC:  U462.3  
Cite this article:

DENG Tao, LI Jun-ying, LUO Jun-lin, ZHOU Hao. The simulation and analysis of ABS based on grey prediction and sliding mode variable structure. Chinese Journal of Engineering Design, 2017, 24(1): 64-69.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2017.01.009     OR     https://www.zjujournals.com/gcsjxb/Y2017/V24/I1/64


基于灰色预测与滑模变结构的ABS仿真分析

为研究汽车制动防抱死系统(antilock brake system,ABS)的超前性、实时性与鲁棒性,结合灰色预测和滑模变结构控制方法,提出基于灰色预测GM(1,1)模型与滑模变结构控制的ABS综合控制算法,建立仿真模型进行数据的对比分析.结果表明:相对于单滑模或bang-bang控制,灰色预测与滑模变结构综合控制方法使汽车ABS超前运行,缩短了制动时间与制动距离;有助于缓解滑模变结构方法自身带来的抖动缺陷.因此,灰色预测与滑模变结构综合控制方法有助于提升ABS的响应速度、实时鲁棒性与人体舒适性.


关键词: ABS,  灰色预测,  滑模变结构,  仿真 
[[1]]   李果. 车辆防抱死制动理论与应用[M]. 北京:国防工业出版社, 2009:46-202. LI Guo. Vehicle anti-lock braking theory and application[M]. Beijing:National Defense Industry Press, 2009:46-202.
[[2]]   王伟达, 丁能根. ABS逻辑门限值自调整控制方法研究与试验验证[J]. 机械工程学报, 2010,46(22):90-95. WANG Wei-da, DING Neng-gen. ABS logic threshold self-tuning control method research and test[J]. Journal of Mechanical Engineering, 2010, 46(22):90-95.
[[3]]   晏蔚光,余达太,李果,等. 汽车防抱制动系统自适应模糊控制算法[J].北京信息科技大学学报,2004,26(2):188-191. YAN Wei-guang, YU Da-tai, LI Guo, et al. Car against holding brake system adaptive fuzzy control Algorithm[J]. Journal of Beijing University of Information Science and Technology, 2004, 26(2):188-191.
[[4]]   TORRES J D S, GALICIA M, LOUKIANOV A G, et al. A sliding mode regulator for antilock brake system[C]. 18th World Congress of the International Federation of Automatic Control. Milano, August 28-September 2, 2011:134-142.
[[5]]   DOUGLAS A R. An overview of automatic speaker recognition technology[J]. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing,2002,4(1):4072-4075.
[[6]]   周兵,徐蒙.基于滑模极值搜索算法的车辆驱动防滑控制策略[J].农业机械学报,2015,46(2):307-311. ZHOU Bing, XU Meng. Based on sliding mode extremum search algorithm of vehicle drive torque control Strategy[J]. Journal of Agricultural Machinery, 2015, 46(2):307-311.
[[7]]   崔杰,耀国,刘思峰.一种新的灰色预测模型及其建模机理[J].控制与决策,2009,24(11):1702-1706. CUI Jie, YAO Guo, LIU Si-feng. A new grey forecasting model and its modeling mechanism[J]. Control and Decision Making, 2009, 24(11):1702-1706.
[[8]]   LUO Ding-sheng, CHEN Ke. Refine decision boundaries of a statistical ensemble by active learning[J]. Proceedings of the International Joint Conference on Neural Networks,2003,2(1):1523-1528.
[[9]]   KYUNG Y J, LEE H S. Bootstrap and aggregating VQ classifier for speaker recognition[J]. Electronics Letters, 1999, 35(12):973-974.
[[10]]   李艳鸽,李粮纲,张乾.基于优化GM(1,1)模型的可视化沉降预测数据的精度研究[J].工程设计学报,2009,16(2):145-148. LI Yan-ge,LI Liang-gang,ZHANG Qian. Research on accuracy of visualized settlement prediction based on optimized GM (1,1)[J]. Chinese Journal of Engineering Design, 2009, 16(2):145-148.
[[11]]   谢乃明,刘思峰.离散GM (1, 1)模型与灰色预测模型建模机理[J].系统工程理论与实践,2005(1):93-98. XIE Nai-ming,LIU Si-feng. Discrete GM (1, 1) model and the modeling mechanism of gray prediction model[J]. Systems Engineering:Theory & Practice, 2005(1):93-98.
[[12]]   刘波,张玘. 汽车防抱制动系统自适应滑模控制算法的研究和半实物仿真[J]. 国防科技大学学报, 2008,30(5):125-130. LIU Bo, ZHANG Qi. Car against holding brake system adaptive sliding mode control algorithm research and hardware-in-the-loop simulation[J]. Journal of National University of Defense Technology, 2008, 30(5):125-130.
[[13]]   REN H P, LIU D. Nonlinear feedback control of chaos in permanent magnet synchronous motor[J]. IEEE Transactions on Circuits and Systems II, 2006, 53(1):45-50.
[[14]]   唐国元,宾鸿赞. ABS的模糊滑模变结构控制方法及仿真研究[J].中国机械工程,2007,18(13):1629-1632. TANG Guo-yuan, BIN Hong-zan. ABS fuzzy sliding mode variable structure control method and simulation study[J]. China Mechanical Engineering, 2007, 18(13):1629-1632.
[[15]]   林程, 彭春雷, 曹万科.独立驱动电动汽车稳定性的滑模变结构控制[J].汽车工程, 2015,37(2):132-138. LIN Cheng, PENG Chun-lei, CAO Wan-ke. Sliding mode variable structure control for the stability of independent drive electric vehicle[J]. Automotive Engineering, 2015, 37(2):132-138.
[[16]]   张兵,唐猛,廖海洲.基于负载观测的PMSM滑模抗扰动自适应控制[J].工程设计学报,2013,20(5):427-433. ZHANG Bing, TANG Meng, LIAO Hai-zhou. Anti-disturbance adaptive sliding mode control of PMSM based on load torque observer[J]. Chinese Journal of Engineering Design, 2013, 20(5):427-433.
[[17]]   WEI D Q, LUO X S, WANG B H, et al. Robust adaptive dynamic surface control of chaos in permanent magnet synchronous motor[J]. Physics Letters A, 2007, 363(1/2):71-77.
[1] Di ZHAO,Guo CHEN,Xiaoli CHEN,Xiongjin WANG. Terrain adaptive mechanism design and obstacle-surmounting performance analysis of wheeled search and rescue robot[J]. Chinese Journal of Engineering Design, 2023, 30(5): 579-589.
[2] Baicun WANG,Kailing ZHU,Jinsong BAO,Feng WANG,Haibo XIE,Huayong YANG. Intelligent design and scheduling optimization of painted body storage based on digital pedestal system[J]. Chinese Journal of Engineering Design, 2023, 30(4): 399-408.
[3] Zhangwei XIE,Xingbo ZHANG,Zhe XU,Yu ZHANG,Fengyun ZHANG,Xi WANG,Pingping WANG,Shufeng SUN,Haitao WANG,Jixin LIU,Weili SUN,Aixia CAO. Construction of surface temperature monitoring system for laser machining parts based on digital twin[J]. Chinese Journal of Engineering Design, 2023, 30(4): 409-418.
[4] Bowei XIE,Mohui JIN,Zhou YANG,Jieli DUAN,Mingyu QU,Jinhui LI. Research on mechanical properties and model parameters of 3D printed TPU material[J]. Chinese Journal of Engineering Design, 2023, 30(4): 419-428.
[5] Dong ZHANG,Pei YANG,Zhexuan HUANG,Lingyu SUN,Minglu ZHANG. Design and optimization of pendulous magnetic adsorption mechanism for wall-climbing robots[J]. Chinese Journal of Engineering Design, 2023, 30(3): 334-341.
[6] Yangbo LI,Gaipin CAI,Liao RUAN. Study on laminated crushing characteristics of W-ore with dual-roller crusher[J]. Chinese Journal of Engineering Design, 2023, 30(2): 212-225.
[7] Xiaocheng XIN,Wei LONG,Hao GAO,Ping WANG,Jilin LEI. Effect of calculation model on effectiveness of characteristics analysis of aerostatic bearings[J]. Chinese Journal of Engineering Design, 2023, 30(2): 226-236.
[8] Shi-yang XU,Bing-hui WU,Dong-mei JI,Xin-yu DAI. Design and motion simulation of automatic inspection robot for power tunnel[J]. Chinese Journal of Engineering Design, 2023, 30(1): 32-38.
[9] Yi LI,Guo-hua CHEN,Ming XIA,Bo LI. Design and simulation optimization of motorized spindle cooling system[J]. Chinese Journal of Engineering Design, 2023, 30(1): 39-47.
[10] Hong-bin RUI,Lu-lu LI,Tian-ci WANG,Kai-wen DUAN. Research on dynamic modeling and motion control of amphibious turtle inspired robot[J]. Chinese Journal of Engineering Design, 2023, 30(1): 73-81.
[11] Wen-bing TU,Xiao-wen YUAN,Jin-wen YANG,Ben-meng YANG. Research on dynamic characteristics of rolling bearing under different component fault conditions[J]. Chinese Journal of Engineering Design, 2023, 30(1): 82-92.
[12] Xu ZHANG,Lei-jie LAI,Li-min ZHU. Magnetic field modeling and thrust analysis of ultra-precision large stroke Maxwell reluctance actuator[J]. Chinese Journal of Engineering Design, 2022, 29(6): 748-756.
[13] Ke-jun LI,Miao-lin CHEN,Jiang-yin WANG,Xue-jun YAO,Min-ya DENG,Long GAO. Study on brake valve performance of hydraulic brake system of wet spraying machine[J]. Chinese Journal of Engineering Design, 2022, 29(5): 579-586.
[14] Chen WANG,Bo GAO,Xu YANG. Lightweight design of Stewart type six-axis force sensor[J]. Chinese Journal of Engineering Design, 2022, 29(4): 419-429.
[15] Shao-yu TANG,Jie WU,Hui ZHANG,Bing-bing DENG,Yu-ming HUANG,Hao HUANG. Simulation and experimental research on temperature field of multipole magnetorheological clutch[J]. Chinese Journal of Engineering Design, 2022, 29(4): 484-492.