Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (6): 845-855    DOI: 10.3785/j.issn.1006-754X.2025.05.148
Mechanical parts and equipment design     
Design and application of handheld actuator transmission system for mine anchor net binding device
Liyong TIAN1(),Yi LIU1,Ning YU1,Xiuyu YANG1,2,Jiahao BAO1,Haijian ZHANG1
1.School of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China
2.China Coal Tianjin Design Engineering Company, Tianjin 300120, China
Download: HTML     PDF(3852KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the problem of low efficiency of manual binding of anchor nets in coal mine tunneling faces, a mine anchor net binding device is proposed. The handheld actuator is the terminal actuator of the mine anchor net binding device. In order to deeply understand its working mechanism and verify the design reliability, the wire feeding, wire cutting and wire twisting processes of the binding mechanism were simulated and analyzed by using SolidWorks software and ANSYS software, respectively. It was concluded that the peak torque of the wire feeding gear during operation was 0.19 N·m, the peak torque of the slicing sheet was 0.54 N·m, and the peak torque of the wire twisting shaft was 0.40 N·m. The multi-body dynamics simulation for the transmission system of the binding mechanism was carried out by using ADAMS software, and the speed characteristic curve of the transmission components during operation and the load characteristic curve of gear meshing transmission were obtained. Based on the ANSYS software, the finite element simulation analysis for the gear meshing motion of the binding mechanism was carried out, and the stress distribution cloud maps of the gear mating surface during the meshing process were obtained. The contact fatigue strength and bending fatigue strength of the gears were checked and verified according to the calculated allowable stress. Finally, an anchor net binding device prototype and a handheld actuator input test platform were built, and the binding performance verification experiments were carried out. The experimental results showed that the performance of the handheld actuator was basically consistent with the simulation analysis results. The binding action was continuous and efficient, and the time for a single binding operation cycle was 1.8 s. The binding effect met the design requirements and actual application needs. The research results provide a theoretical basis for the optimal design and engineering application of the mine anchor net binding device.



Key wordsanchor net binding      handheld actuator      binding mechanism      transmission system      simulation analysis     
Received: 07 July 2025      Published: 30 December 2025
CLC:  TD 353  
Cite this article:

Liyong TIAN,Yi LIU,Ning YU,Xiuyu YANG,Jiahao BAO,Haijian ZHANG. Design and application of handheld actuator transmission system for mine anchor net binding device. Chinese Journal of Engineering Design, 2025, 32(6): 845-855.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.05.148     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I6/845


矿用锚网绑扎装置手持执行器传动系统的设计与应用

针对煤矿掘进工作面人工绑扎锚网效率低的问题,提出了一种矿用锚网绑扎装置。手持执行器是矿用锚网绑扎装置的终端执行器,为深入理解其工作机理并验证其设计可靠性,利用SolidWorks软件和ANSYS软件分别对绑扎机构的送丝、切丝与拧丝过程进行了仿真分析,得出工作过程中送丝齿轮的峰值转矩为0.19 N·m,切丝片的峰值转矩为0.54 N·m,拧丝轴的峰值转矩为0.40 N·m。运用ADAMS软件对绑扎机构的传动系统进行了多体动力学仿真,得到了传动部件运行的速度特性曲线以及齿轮啮合传递的负载特性曲线。基于ANSYS软件对绑扎机构的齿轮啮合运动进行了有限元仿真分析,得出了啮合过程中齿轮结合面的应力分布云图,并根据计算的许用应力对齿轮的接触疲劳强度和弯曲疲劳强度进行了校核与验证。最后,搭建了锚网绑扎装置样机与手持执行器输入测试平台,并开展了绑扎性能验证实验。实验结果表明:手持执行器的性能与仿真分析结果基本吻合,绑扎动作连贯高效,单个绑扎操作循环用时1.8 s,绑扎效果符合设计要求且满足实际使用需求。研究结果为矿用锚网绑扎装置的优化设计与工程应用提供了理论依据。


关键词: 锚网绑扎,  手持执行器,  绑扎机构,  传动系统,  仿真分析 
Fig.1 Structure composition of mine anchor net binding device
Fig.2 Transmission components of handheld actuator
Fig.3 Power transmission block diagram of mine anchor net binding device
Fig.4 Transmission structure diagram of binding mechanism
Fig.5 Simulation model of wire feeding mechanism
Fig.6 Simulation curve of wire feeding torque
Fig.7 Simulation model of wire cutting mechanism
Fig.8 Simulation curve of wire cutting torque
Fig.9 Simulation model of wire twisting mechanism
Fig.10 Simulation curve of wire twisting torque
Fig.11 Input speed curve of binding mechanism
Fig.12 Output torque curve of binding mechanism
Fig.13 Speed curves of transmission components in binding mechanism
Fig.14 Meshing torque curves of gears in binding mechanism
应力小圆柱齿轮大圆柱齿轮小圆锥齿轮大圆锥齿轮小送丝齿轮大送丝齿轮
许用齿面接触应力719688719688719688
许用齿根弯曲应力414343414343414343
齿面接触应力449309643455125114
齿根弯曲应力31.028.970.076.417.216.7
Table 1 Calculation results of meshing stress of gears in binding mechanism
Fig.15 Meshing stress cloud maps of gears in binding mechanism
应力小圆柱齿轮大圆柱齿轮小圆锥齿轮大圆锥齿轮小送丝齿轮大送丝齿轮
齿面接触应力57855564857711983.4
齿根弯曲应力33527721610338.127.6
Table 2 Simulation results of meshing stress of gears in binding mechanism
Fig.16 Binding effect test
组数12345
绑扎时间/s1.821.731.781.881.81
组数678910
绑扎时间/s1.791.841.851.711.74
Table 3 Time for a single binding operation
Fig.17 Handheld actuator input test platform
Fig.18 Input torque and input speed curves of handheld actuator
 
[[1]]   霍媛媛, 陈忠, 于富勇. 矿用气动锚网连扣机: CN212884747U[P]. 2021-04-06.
HUO Y Y, CHEN Z, YU F Y. Mine pneumatic anchor net interlocking machine: CN212884747U[P]. 2021-04-06.
[[2]]   王连超. 气动锚网连扣机在煤矿快速掘进中的应用[J]. 中国高新科技, 2020(18): 66-67.
WANG L C. Application of pneumatic anchor net coupling machine in coal mine rapid driving[J]. China High and New Technology, 2020(18): 66-67.
[[3]]   储凯煜, 江波. 一种双圈成型的气动锚网连扣机: CN109707420B[P]. 2024-06-14.
CHU K Y, JIANG B. A double-loop forming pneumatic anchor net interlocking machine: CN109707420B[P]. 2024-06-14.
[[4]]   肖云升, 白玉星. 钢筋自动化绑扎研究[J]. 中国科技信息, 2023(1): 39-41.
XIAO Y S, BAI Y X. Research on automatic binding of steel bars[J]. China Science and Technology Information, 2023(1): 39-41.
[[5]]   张晓宇. GB/T 3836.4—2021的实施对本质安全装置检测的影响剖析[J]. 电子质量, 2023(2): 107-111.
ZHANG X Y. Analysis of the impact of the implementation of GB/T 3836.4—2021 on the detection of intrinsic safety devices[J]. Electronics Quality, 2023(2): 107-111.
[[6]]   宋占松. GB/T 3836.1新旧标准主要差异[J]. 电气防爆, 2022(1): 13-16.
SONG Z S. Introduction and main differences between GB 3836.1—2010 and GB/T 3836.1—2021[J]. Electric Explosion Protection, 2022(1): 13-16.
[[7]]   王腾飞, 李健. 软轴摩擦力矩计算公式参数优化设计[J]. 机械科学与技术, 2024, 43(11): 1901-1907.
WANG T F, LI J. Optimal design of parameters for calculation formula of friction torque of flexible shaft[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(11): 1901-1907.
[[8]]   鲁士恒, 曹广珍, 冯春玲, 等. 钢丝软轴结构特性及生产技术要求[J]. 金属制品, 2013, 39(4): 14-18.
LU S H, CAO G Z, FENG C L, et al. Structural characteristics and production technology requirements of wire soft shaft[J]. Metal Products, 2013, 39(4): 14-18.
[[9]]   张国耀. 超越离合器在矿用带式输送机中的应用[J]. 山东煤炭科技, 2023, 41(5): 158-160.
ZHANG G Y. Application of overrunning clutch in mining belt conveyor[J]. Shandong Coal Science and Technology, 2023, 41(5): 158-160.
[[10]]   钟翌铭, 闫佳佳, 吕伟领, 等. 滚柱式超越离合器设计及动力学仿真分析[J]. 机电设备, 2023, 40(1): 58-63.
ZHONG Y M, YAN J J, LÜ W L, et al. Design and dynamic simulation analysis of roller overrunning clutch[J]. Mechanical and Electrical Equipment, 2023, 40(1): 58-63.
[[11]]   刘宏泉. 微型齿轮传动系统设计优化[J]. 中国机械, 2024(21): 30-34.
LIU H Q. Design optimization of micro-gear transmission system[J]. Machine China, 2024(21): 30-34.
[[12]]   姜玉恒. 矿石冲击下缓冲托辊架变形及断裂原因分析[J]. 起重运输机械, 2024(16): 75-81.
JIANG Y H. Cause analysis of deformation and fracture of buffer roller frame under ore impact[J]. Hoisting and Conveying Machinery, 2024(16): 75-81.
[[13]]   方剑宇. 多级行星齿轮减速器运动学/动力学分析与加速寿命预测研究[D]. 扬州: 扬州大学, 2023: 14-20.
FANG J Y. Research on kinematics/dynamics analysis and acceleration life prediction of multi stage planetary gear reducer[D]. Yangzhou: Yangzhou University, 2023: 14-20.
[[14]]   梁栋, 江鹏, 李明, 等. 基于ADAMS的圆弧-抛物线构型点接触齿轮动力学分析研究[J]. 机械传动, 2024, 48(3): 1-9.
LIANG D, JIANG P, LI M, et al. Dynamic analysis of point contact gears with circular-parabola configuration based on ADAMS software[J]. Journal of Mechanical Transmission, 2024, 48(3): 1-9.
[[15]]   史铭宇. SPECT机械系统动力学特性研究[D]. 北京: 北京石油化工学院, 2023: 25-29.
SHI M Y. Research on dynamic characteristics of SPECT mechanical system[D]. Beijing: Beijing Institute of Petrochemical Technology, 2023: 25-29.
[[16]]   周长江, 唐进元, 刘艳萍, 等. 齿轮传动设计两种计算标准的比较研究[J]. 机械传动, 2006, 30(3): 9-10, 50.
ZHOU C J, TANG J Y, LIU Y P, et al. Comparative study of calculation of gear drive design by two standards[J]. Journal of Mechanical Transmission, 2006, 30(3): 9-10, 50.
[[17]]   孙志礼, 闫玉涛, 田万禄. 机械设计[M]. 2版.沈阳: 东北大学出版社, 2015.
SUN Z L, YAN Y T, TIAN W L. Mechanical design[M]. Shenyang: Northeastern University Press, 2015.
[[18]]   吴先坤, 程义, 柯宝平, 等. 基于ANSYS Workbench的电机行星齿轮结构设计研究与分析[J]. 客车技术, 2019(5): 7-10, 16.
WU X K, CHENG Y, KE B P, et al. Research and analysis of motor planet gear structure design based on ANSYS Workbench[J]. Bus Technology, 2019(5): 7-10, 16.
[[19]]   何延晓, 王承登, 伍宏建, 等. 考虑冲击与齿根应力的齿轮接触稳定性分析[J]. 机床与液压, 2023, 51(13): 39-45.
HE Y X, WANG C D, WU H J, et al. Analysis of gear contact stability considering impact and tooth root stress[J]. Machine Tool & Hydraulics, 2023, 51(13): 39-45.
[[20]]   曹宇光, 张士华, 刘海超, 等. 大型开式齿轮损伤强度数值模拟分析[J]. 中国石油大学学报(自然科学版), 2012, 36(5): 129-135.
CAO Y G, ZHANG S H, LIU H C, et al. Numerical simulation analysis of damages on strength of large-scale open gears[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(5): 129-135.
[1] Shunhai XU,Xiaolei ZHOU,Guofang GONG,Haoceng HONG,Peng ZHANG,Shang LIU,Yalei FAN. Remanufacturability evaluation of piston pump based on remaining life[J]. Chinese Journal of Engineering Design, 2024, 31(5): 557-564.
[2] Manman LI,Quanhe YANG,Kaiting XIE,Yuan WANG,Donghui XU,Zhaoguo ZHANG. Design and experimental study of hydraulic system of self-propelled Panax notoginseng combine harvester[J]. Chinese Journal of Engineering Design, 2024, 31(5): 670-680.
[3] Xiaobo YU,Sujiao CHEN,Yonghua ZHANG,Binjun MA. Research on gear modification and modal optimization of centralized transmission system based on genetic algorithm[J]. Chinese Journal of Engineering Design, 2024, 31(3): 340-347.
[4] Weitao ZHANG,Dongjie ZHAO,Lu WANG,Xinmian BAO,Baosai HUANG. Kinematics analysis and simulation of a flexible picking robot arm[J]. Chinese Journal of Engineering Design, 2024, 31(2): 230-237.
[5] Xinge LI,Hongyu LIAO,Min ZHOU,Mengmeng CHEN,Liangxi XIE. Innovative design and analysis of swinging spraying mechanism of plastering machine[J]. Chinese Journal of Engineering Design, 2024, 31(2): 248-253.
[6] Wenjing ZHI,Guocai LI,Weijuan ZHENG,Chen ZHANG,Dongping LIU,Xiaoyi CAI. Design of civil aircraft cabin door operation panel based on ergonomics[J]. Chinese Journal of Engineering Design, 2024, 31(1): 107-119.
[7] Liyong TIAN,Rui TANG,Ning YU,Hongyue CHEN. Design and application of belt lifting mechanism for replacing idler of belt conveyor[J]. Chinese Journal of Engineering Design, 2023, 30(6): 667-677.
[8] Dong ZHANG,Pei YANG,Zhexuan HUANG,Lingyu SUN,Minglu ZHANG. Design and optimization of pendulous magnetic adsorption mechanism for wall-climbing robots[J]. Chinese Journal of Engineering Design, 2023, 30(3): 334-341.
[9] Shao-yu TANG,Jie WU,Hui ZHANG,Bing-bing DENG,Yu-ming HUANG,Hao HUANG. Simulation and experimental research on temperature field of multipole magnetorheological clutch[J]. Chinese Journal of Engineering Design, 2022, 29(4): 484-492.
[10] FAN Xiao-yue, LIU Qi, GUAN Wei, ZHU Yun, CHEN Su-lin, SHEN Bin. Simulation and experimental research on thermal effect of electromagnetic micro hammer peening mechanism[J]. Chinese Journal of Engineering Design, 2022, 29(1): 66-73.
[11] ZHANG Qin, PANG Ye-zhong, WANG Kai. Simulation analysis and experimental research on robot pedaling weeding process[J]. Chinese Journal of Engineering Design, 2021, 28(6): 709-719.
[12] ZHANG Shen-tong. Analysis of landing load of aircraft landing gear based on virtual prototype technology[J]. Chinese Journal of Engineering Design, 2021, 28(6): 758-763.
[13] CHEN Zhen, XIONG Tao, YANG Yan-qing, XUE Xiao-wei. Sealing performance analysis and structure optimization of sealing ring of soluble ball seat[J]. Chinese Journal of Engineering Design, 2021, 28(6): 720-728.
[14] YU Ru-fei, KOU Xin, CHEN Wei. Simulation analysis of novel surface texture based on CFD[J]. Chinese Journal of Engineering Design, 2021, 28(4): 466-472.
[15] WANG Yu-pu, CHENG Wen-ming, DU Run, WANG Shu-biao, YANG Xing-zhou, ZHAI Shou-cai. Simulation analysis of wind load response for large gantry crane[J]. Chinese Journal of Engineering Design, 2020, 27(2): 239-246.