Please wait a minute...
Chinese Journal of Engineering Design  2018, Vol. 25 Issue (5): 503-509    DOI: 10.3785/j.issn.1006-754X.2018.05.002
    
Research on factory position and orientation adjustment method of automobile electric seat
LIU Bao-hua1,2, CAO Hai-long1, ZHOU Wei-ke1
1. Hebei Provincial Key Lab of Parallel Robot and Mechatronic System, Yanshan University, Qinhuangdao 066004, China;
2. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
Download: HTML     PDF(2642KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

To solve the coupling problems in the factory position and orientation adjustment process of multi freedom degree automobile electric seat and eliminate the influence of cushion irregular surface on the adjustment process to achieve the rapidly adjustment, a seat position and orientation adjustment method based on the control variable method was proposed. Firstly, according to the fitting curve of the cushion surface and the seat geometry structure, the mathematical relationship between the point on the seat external contour and the joint angles or displacement was established. Then, the current position and orientation of seat was calculated and the seat adjustment scheme was put forward. Lastly, the simulation and experimental verification was carried out to verify the feasibility of the proposed method. Simulation and experimental results showed that the proposed method could eliminate the effect of cushion irregular surface and joint coupling on the adjustment process and improve the accuracy and efficiency of adjustment. The results of the study have certain reference significance for improving the factory position and orientation adjustment method of automobile electric seat and seat adjustment efficiency.



Key wordsautomobile electric seat      position and orientation adjustment      control variable method      fitting curve     
Received: 18 December 2017      Published: 28 October 2018
CLC:  TP242  
Cite this article:

LIU Bao-hua, CAO Hai-long, ZHOU Wei-ke. Research on factory position and orientation adjustment method of automobile electric seat. Chinese Journal of Engineering Design, 2018, 25(5): 503-509.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2018.05.002     OR     https://www.zjujournals.com/gcsjxb/Y2018/V25/I5/503


汽车电动座椅出厂位姿调整方法研究

为了解决多自由度汽车电动座椅出厂位姿调整过程中的耦合问题,消除座垫不规则表面对调整过程的影响,实现座椅位姿的快速调整,提出了一种基于控制变量法的座椅位姿调整方法。首先,根据座垫表面的拟合曲线和座椅的几何结构,建立参考坐标系并分析座椅外部轮廓上的点与当前运动关节的转角或位移之间的数学关系。然后计算出座椅的当前位姿并给出调整方案。最后,通过仿真和实验验证了所提方法的可行性。仿真和实验结果表明:该方法能够消除座垫不规则表面和关节耦合对调整过程的影响,同时能提高调整的准确度和效率。研究结果对改进汽车电动座椅出厂位姿调整方法和提高座椅调整效率有一定的参考意义。


关键词: 汽车电动座椅,  位姿调整,  控制变量法,  拟合曲线 
[[1]]   丁雅斌,梅江平,张文昌,等.基于单目视觉的并联机器人末端位姿检测[J].机械工程学报,2014,50(21):174-179. DING Ya-bin, MEI Jiang-ping, ZHANG Wen-chang, et al. Position and orientation measurement of parallel robot based on monocular vision[J]. Journal of Mechanical Engineering, 2014, 50(21):174-179.
[[2]]   李海涛,郭俊杰,邓玉芬,等.数控机床几何精度的位姿测量原理[J].西安交通大学学报,2016,50(11):62-68. LI Hai-tao, GUO Jun-jie, DENG Yu-fen, et al. Pose measuring principle of geometric accuracy of numerical control machine tools[J]. Journal of Xi'an Jiaotong University, 2016, 50(11):62-68.
[[3]]   ANDREFF N, MARTINET P. Unifying kinematic modeling, identification and control of a Gough-Stewart, parallel robot into a vision-based framework[J]. IEEE Transactions on Robotics, 2006, 22(6):1077-1086.
[[4]]   孙美霞,任立红,韩华,等.基于立体视觉的串联机器人跟踪检测系统[J].计算机工程,2012,38(13):240-243. SUN Mei-xia, REN Li-hong, HAN Hua, et al. Series robot tracking detection system based on stereo vision[J]. Computer Engineering, 2012, 38(13):240-243.
[[5]]   张建亮,周建忠,罗敬文,等.汽车座椅调角器激光焊接工艺研究[J].应用激光,2015,35(2):216-220. ZHANG Jian-liang, ZHOU Jian-zhong, LUO Jing-wen, et al. Study on laser welding technology of automobile seat recliner[J]. Applied Laser, 2015, 35(2):216-220.
[[6]]   张振久,胡泓.基于激光跟踪仪的转台系统几何误差检测[J].中国激光,2012,39(11):180-186. ZHANG Zhen-jiu, HU Hong. Measurement of geometric error of rotary stage system based on laser tracker[J]. Chinese Journal of Lasers, 2012, 39(11):180-186.
[[7]]   杨凡.激光跟踪仪测距精度评定方法研究[J].测绘通报,2013(S1):273-275. YANG Fan. Laser tracker ranging accuracy evaluation method research[J]. Bulletin of Surveying and Mapping, 2013(S1):273-275.
[[8]]   熊有伦,丁汉,刘恩沧.机器人学[M].北京:机械工业出版社,1993:65-70. XIONG You-lun, DING Han, LIU En-cang. Robotics[M]. Beijing:Mechanical Industry Press, 1993:65-70.
[[9]]   郑黎明,黄剑波.基于ADAMS和Simulink的太阳跟踪器联合仿真[J].光学精密工程,2014,22(5):1212-1219. ZHENG Li-ming, HUANG Jian-bo. Co-simulation of solar tracker based on ADAMS and Simulink[J]. Optics and Precision Engineering, 2014, 22(5):1212-1219.
[[10]]   ZHU X, LIU Z, YANG J. Research on co-simulation method in ADAMS and MATLAB for missile seeker's stabilization platform design[C]//Proceedings of 13th International Conference on Systems Simulation, Singapore, Nov. 6-8, 2013.
[[11]]   WANG Y, LI K, ZHOU H, et al. Dynamic analysis and co-simulation ADAMS-Simulink for a space manipulator joint[C]//International Conference on Fluid Power and Mechatronics, Harbin, Aug. 5-7, 2015.
[[12]]   郭卫东,李守忠,马璐.ADAMS 2013应用实例精解教程[M].北京:机械工业出版社,2015:234-264. GUO Wei-dong, LI Shou-zhong, MA Lu. ADAMS 2013 application examples of fine tutorial[M]. Beijing:Mechanical Industry Press, 2015:234-264.
[[13]]   赵波,李博.汽车座椅高度调整机构开发与应用[J].机械设计与制造,2012(4):83-85. ZHAO Bo, LI Bo. Development and application of height adjusting mechanism of automobile seat[J]. Machinery Design & Manufacture, 2012(4):83-85.
[[14]]   杜宝江,唐红朋,程建建,等.可变环境下汽车座椅可控重复测试系统的设计与研究[J].现代制造工程,2014(9):55-58. DU Bao-jiang, TANG Hong-peng, CHENG Jian-jian, et al. Design and research on the retest system for car seats in variable environment[J]. Modern Manufacturing Engineering, 2014(9):55-58.
[1] LI Jing, ZHU Ling-yun, GOU Xiang-feng. Kinematics analysis of lower limb rehabilitation exoskeleton mechanism based on human-machine closed chain[J]. Chinese Journal of Engineering Design, 2019, 26(1): 65-72,109.
[2] FAN Shu-yuan, WANG Hai-bo, WU Xiao-di, ZHANG Le, ZHANG Long. Research on load-bearing performance of industrial assembly exoskeleton manipulator[J]. Chinese Journal of Engineering Design, 2018, 25(6): 697-702.
[3] YIN He-sheng, ZHANG Qiu-ju, NING Meng. Design of synchronous steering mechanism of driving wheel for omnidirectional mobile robot[J]. Chinese Journal of Engineering Design, 2018, 25(2): 230-236.
[4] HUANG Zi-liang, Fang Chen-hao, OUYANG Xiao-ping, YANG Jin-jiang, YANG Hua-yong. Research on the sensing system of lower limb exoskeleton robot based on multi-information fusion[J]. Chinese Journal of Engineering Design, 2018, 25(2): 159-166.
[5] WEN Rui-qiao, YANG Meng-ou, LIU Tao, ZHANG Jun-fu. Time-dependent kinematic reliability analysis of robot manipulators[J]. Chinese Journal of Engineering Design, 2018, 25(1): 50-55.
[6] WANG Chen-xue, PING Xue-liang, XU Chao. Research on the kinematic parameter identification of robot arm based on the assistant location by stereo vision[J]. Chinese Journal of Engineering Design, 2018, 25(1): 27-34.
[7] ZHANG Yong-hua, HE Jian-hui. Research on influence of fin ray motion pattern on the propulsion of bionic undulating fins[J]. Chinese Journal of Engineering Design, 2017, 24(1): 89-99.
[8] XU Jian, MEI Jiang-ping, DUAN Xiao-bin, LUO Zhen-jun, CHEN Luo-gen. An algorithm for segment transition in continuous trajectory planning of industrial robot[J]. Chinese Journal of Engineering Design, 2016, 23(6): 537-543.
[9] WANG Wei-jun, YANG Gui-lin, ZHANG Chi, CHEN Qing-ying. Design and realization of powered caster wheel for omnidirectional mobile robot[J]. Chinese Journal of Engineering Design, 2016, 23(6): 633-638.
[10] LIU Xiao-long, ZHAO Yan-jun, GE Wen-qing, WANG Ying, ZHANG Zhong-dong. Design and dynamics simulation analysis of medical disabled lower limb exoskeleton[J]. Chinese Journal of Engineering Design, 2016, 23(4): 327-332.
[11] YANG Shi-yi, ZHANG Feng-feng, FAN Li-cheng, KUANG Shao-long, SUN Li-ning. Multi target coordinated mechanism parameter optimization method for radiotherapy bed[J]. Chinese Journal of Engineering Design, 2016, 23(3): 256-263.
[12] ZHOU Dong-dong, WANG Guo-dong, XIAO Ju-liang, HONG Ying. Design and kinematics analysis of new modular reconfigurable robot[J]. Chinese Journal of Engineering Design, 2016, 23(1): 74-81.