Please wait a minute...
Chinese Journal of Engineering Design  2018, Vol. 25 Issue (1): 50-55    DOI: 10.3785/j.issn.1006-754X.2018.01.007
    
Time-dependent kinematic reliability analysis of robot manipulators
WEN Rui-qiao, YANG Meng-ou, LIU Tao, ZHANG Jun-fu
School of Mechanical Engineering, Xihua University, Chengdu 610039, China
Download: HTML     PDF(802KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Uncertainty existing in robot manipulators would decrease the kinematic accuracy, so the modeling and analyzing of time-dependent kinematic uncertainty for robot manipulators were carried out in order to improve the kinematic accuracy. Firstly, the error model of position and pose for reference point of end-effector was established based on kinematic analysis. Then, models of point kinematic reliability and time-dependent kinematic reliability for positional accuracy and system reliability model for robot manipulators were proposed based on the error model of position and pose. At last, an envelope method with high efficiency and high precision was utilized to solve the mentioned reliability models above, and effectiveness of the proposed reliability models and solution method were verified by means of Standford robot. The results showed that the reliability model could effectively obtain the time-dependent reliability of each coordinate component and system reliability of the robot manipulators. Thus the research provides a new method for improving kinematic accuracy of robot manipulators.



Key wordsrobot manipulators      positional error      kinematic accuracy      time-dependent kinematic reliability     
Received: 08 May 2017      Published: 28 February 2018
CLC:  TP242  
Cite this article:

WEN Rui-qiao, YANG Meng-ou, LIU Tao, ZHANG Jun-fu. Time-dependent kinematic reliability analysis of robot manipulators. Chinese Journal of Engineering Design, 2018, 25(1): 50-55.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2018.01.007     OR     https://www.zjujournals.com/gcsjxb/Y2018/V25/I1/50


机器人的运动时变可靠性分析

机器人系统存在的多种不确定性会导致其运动精度下降,为此开展机器人运动时变不确定性建模与分析,以期提高机器人运动精度。首先基于运动学分析建立了机器人末端执行器参考点位姿误差模型,随后基于机器人位姿误差模型提出了末端执行器位置精度的点(静态)可靠性、时变(区间)可靠性模型以及机器人运动的系统可靠性模型,最后给出了实现上述可靠性模型高效、高精度求解的包络方法,并以斯坦福机器人为实例验证了所提模型和求解方法的有效性。研究表明,所提出的可靠性模型能够有效获得机器人各坐标分量上的时变可靠度以及机器人运动的系统可靠度。研究工作为提高机器人运动精度提供了新方法。


关键词: 机器人,  位置误差,  运动精度,  运动时变可靠性 
[1] WALDRON K J, KUMAR A. Development of a theory of errors for manipulators[C]//Proceedings of the Fifth World Congress on the Theory of Machines and Mechanisms, Montreal, Canada:American Society of Mechanical Engineers, 1979:821-826.
[2] 徐卫良.机器人机构误差建模的摄动法[J].机器人,1989,3(6):39-44. XU Wei-liang. A perturbation approach to error modeling of robot linkage[J]. Robot, 1989, 3(6):39-44.
[3] 焦国太.机器人位姿误差的分析与综合[D].北京:北京工业大学机械工程与应用电子技术学院,2002:7-12. JIAO Guo-tai. Analysis and synthesis of robot pose errors[D]. Beijing:Beijing University of Technology, College of Mechanical Engineering and Applied Electronics Technology, 2002:7-12.
[4] 卫玉昆,焦国太.基于MATLAB的柔性机械臂动力学分析[J].机械工程与自动化,2016(1):33-36. WEI Yu-kun, JIAO Guo-tai. Flexible robot arm dynamics analysis based on MATLAB[J]. Mechanical Engineering & Automation, 2016(1):33-36.
[5] 陈明哲,张启先.工业机器人误差分析[J].北京航空学院学报,1984(2):11-22. CHEN Ming-zhe, ZHANG Qi-xian. Error analyses of the industrial robots[J]. Journal of Beijing Institute of Aeronautics and Astronautics, 1984(2):11-22.
[6] PEDRAMMEHR S, QAZANI M, ABDI H, et al. Mathematical modelling of linear motion error for Hexarot parallel manipulators[J]. Applied Mathematical Modelling, 2016, 40(2):942-954.
[7] CHEN Gen-liang, WANG Hao, LIN Zhong-qin. A unified approach to the accuracy analysis of planar parallel manipulators both with input uncertainties and joint clearance[J]. Mechanism and Machine Theory, 2013, 64(6):1-17.
[8] FRISOLI A, SOLAZZI M, PELLEGRINETTI D, et al. A new screw theory method for the estimation of position accuracy in spatial parallel manipulators with revolute joint clearances[J]. Mechanism and Machine Theory, 2011, 46(12):1929-1949.
[9] LIU T S, WANG J D. A reliability approach to evaluating robot accuracy performance[J]. Mechanism and Machine Theory, 1994, 29(1):83-94.
[10] BHATTI P K. Probabilistic modeling and optimal design of robotic manipulators[D]. West Lafayette:Purdue University, Department of Mechanical and Aerospace Engineering, 1989:8-16.
[11] RAO S S, BHATTI P K. Probabilistic approach to manipulator kinematics and dynamics[J]. Reliability Engineering and System Safety, 2001, 72(1):47-58.
[12] ZHU J, TING K L. Uncertainty analysis of planar and spatial robots with joint clearances[J]. Mechanism and Machine Theory, 2000, 35(9):1239-1256.
[13] KIM J, SONG W J, KANG B S. Stochastic approach to kinematic reliability of open-loop mechanism with dimensional tolerance[J]. Applied Mathematical Modelling, 2010, 34(5):1225-1237.
[14] ZHANG Jun-fu,DU Xiao-ping. Time-dependent reliability analysis for function generator mechanisms[J]. Journal of Mechanical Design, 2011, 133(3):031005.
[15] PANDEY M D,ZHANG X. System reliability analysis of the robotic manipulator with random joint clearances[J]. Mechanism and Machine Theory, 2012, 58(3):137-152.
[16] DU Xiao-ping. Time-dependent mechanism reliability analysis with envelope functions and first-order approximation[J]. Journal of Mechanical Design, 2014, 136(8):081010.
[17] ZHANG Jun-fu, WANG Jing-ge, DU Xiao-ping, et al.Time-dependent probabilistic synthesis for function generator mechanisms[J]. Mechanism & Machine Theory, 2011, 46(9):1236-1250.
[18] ZHANG Jun-fu, DU Xiao-ping. Time-dependent reliability analysis for function generation mechanisms with random joint clearances[J]. Mechanism and Machine Theory, 2015, 92:184-199.
[1] GAO Yi-chao, ZHOU Zhi-hong, LIU Juan. Analysis on reliability of main motion mechanism of internal combustion engine[J]. Chinese Journal of Engineering Design, 2009, 16(2): 84-87.