Please wait a minute...
Chinese Journal of Engineering Design  2016, Vol. 23 Issue (1): 74-81    DOI: 10.3785/j.issn.1006-754X.2016.01.012
    
Design and kinematics analysis of new modular reconfigurable robot
ZHOU Dong-dong, WANG Guo-dong, XIAO Ju-liang, HONG Ying
School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
Download: HTML     PDF(1435KB)
Export: BibTeX | EndNote (RIS)      

Abstract  A new reconfigurable industrial robot was developed with modular method. The robot's load weight ratio reached 1/4.5 by the optimized design of its structure. Each joint of the robot had the same structure, which reduced repetitive design work. And the transmission components of the joint were all standard parts, which reduced the cost. Through the combination of joint modules and arm modules, different robot configurations could be obtained. Aiming at one robot configuration, the forward kinematics model was established with DH method. Since the robot did not have adjacent three-axis that intersected at one point, it was difficult to obtain all inverse kinematic solutions by traditional method. Thus, a new method with the combination of algebraic and geometric methods was proposed to obtain all analytical solutions. Finally, the kinematic analysis of this robot was verified by examples. The kinematic analysis could provide a basis for subsequent robot motion control.

Key wordsrobot      modularization      reconfigurable      load weight ratio      kinematics     
Received: 08 October 2015      Published: 28 February 2016
CLC:  TH122  
  TP242.2  
Cite this article:

ZHOU Dong-dong, WANG Guo-dong, XIAO Ju-liang, HONG Ying. Design and kinematics analysis of new modular reconfigurable robot. Chinese Journal of Engineering Design, 2016, 23(1): 74-81.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2016.01.012     OR     https://www.zjujournals.com/gcsjxb/Y2016/V23/I1/74


新型模块化可重构机器人设计与运动学分析

采用模块化设计思想,设计了一种新型可重构工业机器人.通过对机器人进行结构优化设计,机器人的负载自重比达到1/4.5.机器人各关节模块的结构均相同,大幅减少了设计工作量;关节模块中传动部件均采用通用件,降低了机器人的成本.通过关节模块和手臂模块的组合,可形成多种机器人构型.针对其中一种机器人构型,利用DH法建立了机器人正运动学模型.该构型机器人不符合相邻的3根关节轴线交于一点的条件,利用传统方法很难求得全部逆解,因此提出一种代数法与几何法相结合的新方法,求得该构型机器人逆运动学的完整解析解.机器人运动学分析的正确性通过算例进行了验证,为机器人的运动控制奠定基础.

关键词: 机器人,  模块化,  可重构,  负载自重比,  运动学 
[1] 王田苗,陶永.我国工业机器人技术现状与产业化发展战略[J].机械工程学报,2014,50(9):1-13. WANG Tian-miao,TAO Yong.Research status and in-dustrialization development strategy of Chinese indus-trial robot[J].Chinese Journal of Mechanical Engineering,2014,50(9):1-13.

[2] 谭民,王硕.机器人技术研究进展[J].自动化学报,2013,39(7):963-972. TAN Min,WANG Shuo.Research progress on robotics[J].ACTA Automation Sinica,2013,39(7):963-972.

[3] 刘爽,殷国富,李雪琴,等.可重构模块化工业机器人构形及其静力学分析[J].机械设计与制造,2011(11):205-207. LIU Shuang,YIN Guo-fu,LI Xue-qin,et al.Configura- tion of industrial robots based on reconfigurable modularization and its statics analysis[J].Machinery Design & Manufacture,2011(11):205-207.

[4] 肖智勇,段建中,杜鑫强,等.Motoman 工业机器人有限元静态分析及改进设计[J].长沙理工大学学报(自然科学版),2011,8(4):71-76. XIAO Zhi-yong,DUAN Jian-zhong,DU Xin-qiang,et al.Finite element static analysis and design improvement for motorman industrial robot[J].Journal of Changsha University of Science and Technology (Natural Science),2011,8(4):71-76.

[5] PAREDISC J J,BROWN H B,KHOSLA P K.Rapidly deployable manipulator system[J].Robotics and Auto-nomous Systems,1997,21(3):289-304.

[6] ALBU-SCHAFFER A,EIBERGER O,GREBENSTEIN M,et al.Soft robotics[J].IEEE Robotics and Automa-tion Magazine,2008,15(3):20-30.

[7] 潘新安,王洪光,姜勇,等.一种模块化可重构机器人系统的研制[J].智能系统学报,2013,8(4):292-298. PAN Xin-an,WANG Hong-guang,JIANG Yong,et al.Development of a modular reconfigurable robot system[J].CAAI Transaction on Intelligent System,2013,8(4):292-298.

[8] 吴文强,管贻生,朱海飞,等.面向任务的可重构模块化机器人构型设计[J].哈尔滨工业大学学报,2014,46(3):93-98. WU Wen-qiang,GUAN Yi-sheng,ZHU Hai-fei,et al.Task-oriented configuration design of reconfigurable modular robots[J].Journal of Harbin Institute of Tech-nology,2014,46(3):93-98.

[9] 克来格.机器人学导论(3版)[M]. 贠超,等,译.北京:机械工业出版社,2006:78-81. CRAIG J J.Introduction to robotics:mechanics and control(3th ed)[M].Translated by YUN Chao,et al.Beijing:Machinery Industry Press,2006:78-81.

[10] 李爱成,唐火红,冯宝林,等.关节式码垛机器人运动学分析与动力学仿真[J].机械设计,2013,30(10):16-20. LI Ai-cheng,TANG Huo-hong,FENG Bao-lin,et al.Kinematics analysis and dynamics simulation of the joint type stacking robot[J].Journal of Machine Design,2013,30(10):16-20.

[11] 蔡自兴.机器人学[M].北京:清华大学出版社,2000:47-52. CAI Zi-xing.Robotics[M].Beijing:Tsinghua University Press,2000:47-52.

[12] 刘极峰,易际明.机器人技术基础[M].北京:高等教育出版社,2006:31-34. LIU Ji-feng,YI Ji-ming.Fundamentals of robotics[M].Beijing:Higher Education Press,2006:31-34.

[13] 曹电锋,杨启志,庄佳奇,等.一种六自由度上肢康复机器人的结构设计及运动学分析[J].工程设计学报,2013,20(4):338-343. CAO Dian-feng,YANG Qi-zhi,ZHUANG Jia-qi,et al.Structure design and analysis of kinematics of a 6-DOF upper-limbed rehabilitation robot[J].Chinese Journal of Engineering Design,2013,20(4):338-343.

[14] 李宪华,郭永存,张军,等.模块化六自由度机械臂逆运动学解算与验证[J].农业机械学报,2013,44(4):246-251. LI Xian-hua,GUO Yong-cun,ZHANG Jun,et al.Inverse kinematics solution and verification of modular 6-DOF manipulator[J].Journal of Agricultural Machinery,2013,44(4):246-251.

[15] 姜宏超,刘士荣,张波涛.六自由度模块化机械臂的逆运动学分析[J].浙江大学学报(工学版),2010,44(7):1348-1354. JIANG Hong-chao,LIU Shi-rong,ZHANG Bo-tao.In- verse kinematics analysis for 6 degree-of-freedom modular manipulator[J].Journal of Zhejiang University (Engineering Science),2010,44(7):1348-1354.
[1] Chun-yan ZHANG,Bing DING,Zhi-qiang HE,Jie YANG. Kinematics analysis and optimization of rotary multi-legged bionic robot[J]. Chinese Journal of Engineering Design, 2022, 29(3): 327-338.
[2] Yue-peng WANG,Bu-yun WANG. Dynamic modeling and experimental research of lower limb exoskeleton assisted robot[J]. Chinese Journal of Engineering Design, 2022, 29(3): 358-369.
[3] Wei-guang TIAN,Hai-li XU,Yan CHEN,Yi-xian ZHU,Xi LIU. Variable lane isolation guardrail carrier robot system and its control strategy[J]. Chinese Journal of Engineering Design, 2022, 29(2): 237-246.
[4] Hong-bin RUI,Lu-lu LI,Wei CAO,Tian-ci WANG,Kai-wen DUAN,Ying-hui WU. Gait planning and obstacle-surmounting performance analysis of wheel-track-leg composite bionic robot[J]. Chinese Journal of Engineering Design, 2022, 29(2): 133-142.
[5] Qing-xiang LIU,Bing-jing GUO,Jian-hai HAN,Xiang-pan LI,Ming-xiang HUANG. Somatosensory interactive upper-limb mirror rehabilitation training robot system[J]. Chinese Journal of Engineering Design, 2022, 29(2): 143-152.
[6] Qin LI,Ying-qi JIA,Yu-feng HUANG,Gang LI,Chuang YE. A multi-objective trajectory optimization algorithm for industrial robot[J]. Chinese Journal of Engineering Design, 2022, 29(2): 187-195.
[7] LIANG Dong, LIANG Zheng-yu, CHANG Bo-yan, QI Yang, XU Zhen-yu. Optimal design of assisting-riveting parallel robot for lifting arm of dobby loom[J]. Chinese Journal of Engineering Design, 2022, 29(1): 28-40.
[8] ZHONG Dao-fang, TIAN Ying, ZHANG Ming-lu. Design and optimization of permanent magnet adsorption device for wheel-legged wall-climbing robot[J]. Chinese Journal of Engineering Design, 2022, 29(1): 41-50.
[9] ZHANG Qin, PANG Ye-zhong, WANG Kai. Simulation analysis and experimental research on robot pedaling weeding process[J]. Chinese Journal of Engineering Design, 2021, 28(6): 709-719.
[10] ZHENG Yu-chen, JU Feng, WANG Dan, SUN Jing-bin, WANG Ya-ming, CHEN Bai. Design and control research of aeroengine blade detection robot[J]. Chinese Journal of Engineering Design, 2021, 28(5): 625-632.
[11] HAO Wei-liang, PAN Chun-rong, REN Yan-kui. Design of trigger hydraulic auxiliary obstacle crossing mechanism for sweeping robot[J]. Chinese Journal of Engineering Design, 2021, 28(5): 569-575.
[12] ZHENG Ming-jun, ZHAO Chen-lei, WU Wen-jiang, YANG She. Analysis and optimization of all-terrain mobile robot body structure[J]. Chinese Journal of Engineering Design, 2021, 28(2): 195-202.
[13] ZHANG Hong, QIU Xiao-tian. Omni-directional mobile navigation system based on ROS and EtherCAT[J]. Chinese Journal of Engineering Design, 2021, 28(2): 241-247.
[14] WANG Xin-yu, PING Xue-liang. Speed control method of mobile robot based on multi-sensor fusion information[J]. Chinese Journal of Engineering Design, 2021, 28(1): 63-71.
[15] LI Peng-ju, MAO Peng-jun, GENG Qian, FANG Qian, ZHANG Jia-rui, HUANG Chuan-peng. Design and test analysis of matrix cutting system of eucommia ulmoides grafting robot[J]. Chinese Journal of Engineering Design, 2020, 27(6): 744-752.