Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (3): 358-369    DOI: 10.3785/j.issn.1006-754X.2022.00.048
Modeling, Simulation, Analysis and Decision     
Dynamic modeling and experimental research of lower limb exoskeleton assisted robot
Yue-peng WANG1(),Bu-yun WANG2,3()
1.College of Mechanical Engineering, Anhui Institute of Information Technology, Wuhu 241199, China
2.School of Artificial Intelligence, Anhui Polytechnic University, Wuhu 241000, China
3.Institute of Technology Robotics Industry, Anhui Polytechnic University, Wuhu 241007, China
Download: HTML     PDF(4249KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The lower limb exoskeleton assisted robot has problems such as whether the human-machine joints match, and whether the active joint design meets the driving force requirements of human joint during motion. In order to solve these problems, based on the designed electro-hydraulic servo driven lower limb exoskeleton assisted robot, by simplifying it into a seven-link structure, the instantaneous dynamic model of swing phase and support phase were constructed by Newton-Euler method combining with the gait balance theory. Then, the angle data, velocity data of human motion under different gait phases and the robot structure parameters were substituted into the Newton-Euler dynamic iteration equations to obtain the theoretical driving torque of each joint of the robot. Finally, the ADAMS (automatic dynamic analysis of mechanical systems) simulation experiment and human-machine cooperative walking aid experiment were carried out, and the correctness and effectiveness of the constructed dynamic iteration equations were verified by comparing the peak driving torque of each joint of the robot. The results showed that using the Newton-Euler method to solve the driving torque of the lower limb exoskeleton assisted robot joint could provide important theoretical support for its structural optimization and control strategy formulation.



Key wordslower limb exoskeleton assisted robot      dynamic analysis      Newton-Euler method      human-machine cooperative walking aid experiment     
Received: 01 November 2021      Published: 05 July 2022
CLC:  TH 113.2  
Corresponding Authors: Bu-yun WANG     E-mail: ypwang19@iflytek.com;ayun@ahpu.edu.cn
Cite this article:

Yue-peng WANG,Bu-yun WANG. Dynamic modeling and experimental research of lower limb exoskeleton assisted robot. Chin J Eng Design, 2022, 29(3): 358-369.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.048     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I3/358


下肢外骨骼助力机器人动力学建模及实验研究

下肢外骨骼助力机器人存在人?机关节是否匹配、主动关节设计是否满足人体关节运动的驱动力要求等问题。为解决上述问题,基于所设计的电液伺服驱动下肢外骨骼助力机器人,将其简化为七连杆结构,并结合步态平衡理论,采用牛顿?欧拉法构建了其摆动相与支撑相瞬时动力学模型。然后,将不同步态相位下人体运动时的角度数据、速度数据及机器人结构参数代入牛顿?欧拉动力学迭代方程,求得机器人各关节的理论驱动力矩。最后,开展ADAMS(automatic dynamic analysis of mechanical systems,机械系统动力学自动分析)仿真实验和人机协同助行实验,通过对机器人各关节的驱动力矩峰值进行比较,验证了所构建动力学迭代方程的正确性和有效性。结果表明,通过采用牛顿?欧拉法来求解下肢外骨骼助力机器人关节的驱动力矩,可为其结构优化与控制策略制定提供重要的理论支撑。


关键词: 下肢外骨骼助力机器人,  动力学分析,  牛顿?欧拉法,  人机协同助行实验 
Fig.1 Structure diagram of electro-hydraulic servo driven lower limb exoskeleton assisted robot
方法优点缺点
牛顿?欧拉法求解过程详细,能求得各连杆的驱动力和力矩,且精度高推导过程繁琐,建模过程复杂,计算难度大
拉格朗日法推导过程较简单,能得到封闭形式方程,且方程的结构紧凑及不包含约束力,便于分析与计算计算效率较低,实时性差
凯恩法方程简单,计算效率高,避免了求导运算对复杂系统的求解精度低
虚功原理法运算效率较高,适用于静力学分析对动态运动的分析精度低
Table 1 Comparison of advantages and disadvantages of different dynamic analysis methods
Fig. 2 Schematic diagram of gait cycle of human walking
Fig.3 Dynamic model of swing phase for lower limb exoskeleton assisted robot
参数名称
θ1右腿踝关节角度
θ2右腿膝关节角度
θ3右腿髋关节角度
θ4人体质心偏转角度
θ5左腿髋关节角度
θ6左腿膝关节角度
θ7左腿踝关节角度
m1智能鞋质量
m2小腿质量
m3大腿质量
m4人体质量
L1智能鞋长度
L2小腿长度
L3大腿长度
LP髋关节到人体质心的距离
cii=1, 2, …, 7)各连杆的质心
Table 2 Dynamics-related parameters of lower limb exoskeleton assisted robot
Fig.4 Sagittal swing phase diagram of lower limb exoskeleton assisted robot
Fig.5 Dynamic model of dual-support phase for lower limb exoskeleton assisted robot
Fig.6 Sagittal dual-support phase diagram of lower limb exoskeleton assistied robot
参数量值
m10.8 kg
m20.4 kg
m30.5 kg
m430 kg
L175 mm(0.075 m)
L2420 mm(0.42 m)
L3480 mm(0.48 m)
LP300 mm(0.30 m)
Table 3 Values of structure parameters of lower limb exoskeleton assisted robot
关节角度/(°)角速度/(°/s)角加速度/(°/s2)驱动力矩/N·m
左腿髋关节19.5918.622.01-59.89
右腿髋关节6.322.270.89-188.75
左腿膝关节60.2062.422.52-20.65
右腿膝关节16.4122.890.7531.73
Table 4 Dynamic parameter values of each joint of lower limb exoskeleton assisted robot in the middle stage of support phase
关节角度/(°)角速度/(°/s)角加速度/(°/s2)驱动力矩/N·m
左腿髋关节29.0033.83-0.8585.69
右腿髋关节31.1329.211.05-105.62
左腿膝关节28.9638.853.55-17.57
右腿膝关节26.3330.861.36-20.99
Table 5 Dynamic parameter values of each joint of lower limb exoskeleton assisted robot in the end stage of support phase
关节角度/(°)角速度/(°/s)角加速度/(°/s2)驱动力矩/N·m
左腿髋关节14.425.84-0.35-133.18
右腿髋关节52.7036.781.8821.37
左腿膝关节24.8213.56-0.52-72.91
右腿膝关节50.3442.822.23-66.42
Table 6 Dynamic parameter values of each joint of lower limb exoskeleton assisted robot in the middle swing phase
Fig.7 Theoretical values of driving torque of each joint of lower limb exoskeleton assisted robot in a single gait cycle
关节驱动力矩/N·m
最大值最小值
左腿髋关节332.88-232.02
右腿髋关节265.48-188.75
左腿膝关节259.69-184.51
右腿膝关节199.77-174.38
Table 7 Theoretical peak values of driving torque of each joint of lower limb exoskeleton assisted robot in a single gait cycle
Fig.8 ADAMS dynamic simulation model of lower limb exoskeleton assisted robot
Fig.9 Simulation results of joint angles of lower limb exoskeleton assisted robot during horizontal walking
Fig.10 Simulation results of joint driving torque and hydraulic cylinder driving force of lower limb exoskeleton assisted robot during horizontal walking
Fig. 11 Human-machine interaction laboratory
Fig.12 Visual 3D gait analysis software
Fig.13 Human-machine cooperative walking aid experiment site
Fig.14 Comparison of angle of hip joint and knee joint of lower limb exoskeleton assisted robot
Fig.15 Comparison of driving torque of hip joint and knee joint of lower limb exoskeleton assisted robot
[1]   MA Y, WU X Y, YANG S X, et al. Online gait planning of lower-limb exoskeleton robot for paraplegic rehabilitation considering weight transfer process[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18(2): 414-425. doi:10.1109/tase.2020.2964807
doi: 10.1109/tase.2020.2964807
[2]   韩亚丽,王兴松.下肢助力外骨骼的动力学分析及仿真[J].系统仿真学报,2013,25(1):61-67,73. doi:10.16182/j.cnki.joss.2013.01.032
HAN Ya-li, WANG Xing-song. Dynamic analysis and simulation of lower limb power-assisted exoskeleton[J]. Journal of System Simulation, 2013, 25(1): 61-67, 73.
doi: 10.16182/j.cnki.joss.2013.01.032
[3]   张燕,李梵茹,李威,等.基于人机耦合的下肢外骨骼动力学分析及仿真[J].应用数学和力学,2019,40(7):780-790. doi:10.21656/1000-0887.390212
ZHANG Yan, LI Fan-ru, LI Wei, et al. Dynamic analysis and simulation of the lower extremity exoskeleton based on human-machine interaction[J]. Applied Mathematics and Mechanics, 2019, 40(7): 780-790.
doi: 10.21656/1000-0887.390212
[4]   WATANABE H, TANAKA N, INUTA T, et al. Locomotion improvement using a hybrid assistive limb in recovery phase stroke patients: a randomized controlled pilot study[J]. Archives of Physical Medicine and Rehabilitation, 2014, 95(11): 2006-2012. doi:10.1016/j.apmr.2014.07.002
doi: 10.1016/j.apmr.2014.07.002
[5]   ESQUENAZI A, TALATY M, PACKEL A, et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury[J]. American Journal of Physical Medicine and Rehabilitation, 2012, 91(11): 911-921. doi:10.1097/phm.0b013e318269d9a3
doi: 10.1097/phm.0b013e318269d9a3
[6]   PANIZZOLO F A, GALIANA I, ASBECK A T, et al. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking[J]. Journal of NeuroEngineering and Rehabilitation, 2016, 13(1): 43. doi:10.1186/s12984-016-0150-9
doi: 10.1186/s12984-016-0150-9
[7]   陈春杰,张邵敏,王灿,等.基于稳定阈度分析的外骨骼动态步长规划方法[J].仪器仪表学报,2017,38(3):523-529. doi:10.3969/j.issn.0254-3087.2017.03.002
CHEN Chun-jie, ZHANG Shao-min, WANG Can, et al. Dynamic step length planning method based on stable threshold analysis for exoskeleton[J]. Chinese Journal of Scientific Instrument, 2017, 38(3): 523-529.
doi: 10.3969/j.issn.0254-3087.2017.03.002
[8]   KAZEROONI H. Human augmentation and exoskeleton systems in Berkeley[J]. International Journal of Humanoid Robotics, 2007, 4(3): 575-605. doi:10.1142/S0219843607001187
doi: 10.1142/S0219843607001187
[9]   何健,王海波,李雪峰,等.负重型下肢外骨骼液压动力单元的研究[J].液压与气动,2017(11):6-11.
HE Jian, WANG Hai-bo, LI Xue-feng, et al. Hydraulic power unit of lower limb power assisted exoskeleton[J]. Chinese Hydraulics & Pneumatics, 2017(11): 6-11.
[10]   NASIRI R, AHMADI A, AHMADABADI M N. Reducing the energy cost of human running using an unpowered exoskeleton[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(10): 2026-2032. doi:10.1109/tnsre.2018.2872889
doi: 10.1109/tnsre.2018.2872889
[11]   王永奉,赵国如,孔祥战,等.肌力协同补偿的无动力下肢外骨骼设计与分析[J].工程设计学报,2021,28(6):764-775. doi:10.3785/j.issn.1006-754X.2021.00.080
WANG Yong-feng, ZHAO Guo-ru, KONG Xiang-zhan, et al. Design and analysis of unpowered lower-limb exoskeleton with muscle strength synergistic compensation[J]. Chinese Journal of Engineering Design, 2021, 28(6): 764-775.
doi: 10.3785/j.issn.1006-754X.2021.00.080
[12]   汪步云,汪志红,许德章.下肢外骨骼助力机器人本体结构设计与运动学分析[J].机械科学与技术,2018,37(4):553-559. doi:10.13433/j.cnki.1003-8728.2018.0410
WANG Bu-yun, WANG Zhi-hong, XU De-zhang. Mechanical design and kinematics analysis on a wearable power-assisted robot for lower extremity exoskeleton[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(4): 553-559.
doi: 10.13433/j.cnki.1003-8728.2018.0410
[13]   汪步云,王月朋,梁艺,等.下肢外骨骼助力机器人关节驱动设计及试验分析[J].机械工程学报,2019,55(23):55-66. doi:10.3901/JME.2019.23.055
WANG Bu-yun, WANG Yue-peng, LIANG Yi, et al. Design on articular motion and servo driving with experimental analysis for lower limb exoskeleton robot[J]. Journal of Mechanical Engineering, 2019, 55(23): 55-66.
doi: 10.3901/JME.2019.23.055
[14]   王月朋.下肢外骨骼助力机器人稳定性判别研究[D].芜湖:安徽工程大学,2021:68-70.
WANG Yue-peng. Research on stability criterion of power-assisted robot for lower limb exoskeleton[D]. Wuhu: Anhui Polytechnic University, 2021: 68-70.
[15]   唐志勇,谭振中,裴忠才.下肢外骨骼机器人动力学分析与设计[J].系统仿真学报,2013,25(6):1338-1344.doi:10.16182/j.cnki.joss.2013.06.048
TANG Zhi-yong, TAN Zhen-zhong, PEI Zhong-cai. Design and dynamic analysis of lower extremity exoskeleton[J]. Journal of System Simulation, 2013, 25(6): 1338-1344.
doi: 10.16182/j.cnki.joss.2013.06.048
[16]   张铭奎,程文明,刘放.助力外骨骼负载特征与驱动特征耦合效应[J].浙江大学学报(工学版),2017,51(4):807-816. doi:10.3785/j.issn.1008-973X.2017.04.023
ZHANG Ming-kui, CHENG Wen-ming, LIU Fang. Coupling effect between load characteristics and joint driving characteristics of powered exoskeleton[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(4): 807-816.
doi: 10.3785/j.issn.1008-973X.2017.04.023
[17]   邓斌,赵英朋.新型下肢外骨骼机器人动力学仿真[J].机械设计与制造,2021(6):300-304. doi:10.3969/j.issn.1001-3997.2021.06.069
DENG Bin, ZHAO Ying-peng. Dynamics simulation of new exoskeleton robot[J]. Machinery Design & Manufacture, 2021(6): 300-304.
doi: 10.3969/j.issn.1001-3997.2021.06.069
[18]   董平,樊军,周东栋.基于助力式外骨骼系统的动力学分析与研究[J].机床与液压,2017,45(15):1-3. doi:10.3969/j.issn.1001-3881.2017.15.001
DONG Ping, FAN Jun, ZHOU Dong-dong. Dynamics analysis and study based on wearable exoskeleton system[J]. Machine Tool & Hydraulics, 2017, 45(15): 1-3.
doi: 10.3969/j.issn.1001-3881.2017.15.001
[19]   谢峥,王明江,黄武龙,等.基于实时步态分析的行走辅助外骨骼机器人系统[J].生物医学工程学杂志,2017,34(2):265-270. doi:10.7507/1001-5515.201607075
XIE Zheng, WANG Ming-jiang, HUANG Wu-long, et al. Exoskeleton robot system based on real-time gait analysis for walking assist[J]. Journal of Biomedical Engineering, 2017, 34(2): 265-270.
doi: 10.7507/1001-5515.201607075
[20]   李石磊.下肢外骨骼机器人步态规划与控制方法研究[D].哈尔滨:哈尔滨工业大学,2017:46-53.
LI Shi-lei. Gait planning and control method of lower extremity exoskeletal robot[D]. Harbin: Harbin Institute of Technology, 2017: 46-53.
[21]   郭冰菁,韩建海,李向攀,等.理疗师交互下的下肢康复训练机器人个性化步态规划方法[J].机器人,2018,40(4):479-490,499. doi:10.13973/j.cnki.robot.180139
GUO Bing-jing, HAN Jian-hai, LI Xiang-pan, et al. Personalized gait planning method for the lower-limb rehabilitation training robot with the physiotherapist interaction[J]. Robot, 2018, 40(4): 479-490, 499.
doi: 10.13973/j.cnki.robot.180139
[1] DU Jun, GU Hai-tao, MENG Ling-shuai, BAI Gui-qiang. Design and hydrodynamic analysis of AUV self-recovery device for USV[J]. Chin J Eng Design, 2018, 25(1): 35-42.
[2] LIU Ya-Dong, YANG Zhong-Jiong, ZHOU Li-Qiang, XU Jing. The vibration characteristics of wet spraying machine manipulator gun[J]. Chin J Eng Design, 2013, 20(4): 303-308.
[3] GU Wei-Bin, YAO Zhen-Qiang, HU Jun. Dynamic analysis of micro-feed mechanism in high-speed roller grinding machine[J]. Chin J Eng Design, 2007, 14(6): 460-463.
[4] WU Jie, GAN Gang, XUAN Ji-Can. Anti-seismic analysis and design of Zhoushan administrative center connected twins tall building[J]. Chin J Eng Design, 2004, 11(2): 106-110.
[5] HU Ning, LUO Yao-Zhi. Application of m echanism design to construction of
cylindrical latticed shells
[J]. Chin J Eng Design, 2003, 10(1): 47-51.
[6] XUE Cai-Jun, QIU Qing-Ying, YANG Wei. Research on collaborative analysis m ethod of static and dynam ic perform ance of m echanical structure[J]. Chin J Eng Design, 2002, 9(4): 183-186.