Please wait a minute...
Chinese Journal of Engineering Design  2018, Vol. 25 Issue (2): 159-166    DOI: 10.3785/j.issn.1006-754X.2018.02.005
    
Research on the sensing system of lower limb exoskeleton robot based on multi-information fusion
HUANG Zi-liang, Fang Chen-hao, OUYANG Xiao-ping, YANG Jin-jiang, YANG Hua-yong
State Key Laboratory of Fluid Power and Mechatronic System, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(15062KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The sensing system of body movement is the key to realize compliant control and human-robot coupling for the exoskeleton robot. The dynamic model of the lower limb was analyzed and the cooperative control method was brought forward. Position control method was applied in the support phase, and the interactive-force based admittance control method was applied in the swing phase. According to the method, the sensing system of lower limb exoskeleton robot based on multi-information fusion was developed, which employed joints angle of body, human-machine interaction force and plantar pressure as perceptual parameters. Using the variable-gain Kalman fliter algorithm to process the angle measured by IMU sensor and the Savitzky-Golay filter algorithm to process the pressure measured by FSR, the gait characteristic was acquired and the test was carried out to verify the reliability of the method. The experimental results showed that the attitude angle calculating algorithm of IMU data had the characteristics of high precision and good stability, and the human-robot interactive method and the FSR pressure data processing algorithm were feasible, which meant that the sensing system had the reliable ability to acquire and fuse attitude angle, interaction force and plantar pressure and identify the wearer's gait accurately. The results can provide a reference for optimizing the sensing system of exoskeleton robot and promote the development of the control systems and strategies of exoskeleton robot.



Key wordsmulti-information      exoskeleton robot      sensing system      variable-gain Kalman filter algorithm      Savitzky-Golay filter algorithm     
Received: 11 May 2017      Published: 28 April 2018
CLC:  TP242.6  
Cite this article:

HUANG Zi-liang, Fang Chen-hao, OUYANG Xiao-ping, YANG Jin-jiang, YANG Hua-yong. Research on the sensing system of lower limb exoskeleton robot based on multi-information fusion. Chinese Journal of Engineering Design, 2018, 25(2): 159-166.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2018.02.005     OR     https://www.zjujournals.com/gcsjxb/Y2018/V25/I2/159


基于多信息融合的下肢外骨骼机器人感知系统研究

人体运动感知系统是外骨骼机器人柔顺控制和人机耦合的关键。通过分析外骨骼机器人的下肢动态模型,提出了一种支撑相选择位置控制、摆动相选择交互力导纳控制的人机协同控制方法。根据该方法开发了一种基于多信息融合的下肢外骨骼机器人感知系统,以人体下肢关节角度、人机交互力和足底压力为运动状态感知量,利用变增益卡尔曼滤波算法和Savitzky-Golay滤波算法分别对IMU传感器数据进行姿态角度解算和对FSR压力数据进行预处理,获得步态特征并通过试验来验证该方法的可靠性。试验结果表明:角度解算算法具有高精度、高稳定性的特点,交互力感知方法和FSR压力数据处理算法具有可行性,验证了所开发的感知系统能够可靠地获取关节角度、人机交互力和足底压力并融合处理,以及准确地识别穿戴者的步态特征。研究结果为外骨骼机器人感知系统的优化提供一定参考,促进了外骨骼机器人控制系统及策略的发展。


关键词: 多信息,  外骨骼机器人,  感知系统,  变增益卡尔曼滤波算法,  Savitzky-Golay滤波算法 

[1] 李俊杰.外骨骼步态检测系统的研究与实现[D].成都:电子科技大学自动化工程学院,2013:1-3. LI Jun-jie. Research and implementation of the exoskeleton gait detection system[D]. Chengdu:University of Electronic Science and Technology of China, School of Automation Engineering, 2013:1-3.
[2] 孙建,余永,葛运建,等.可穿戴型下肢助力机器人感知系统研究[J].微纳电子技术,2007,44(7):353-357. SUN Jian, YU Yong, GE Yun-jian, et al. Research on sensing systems of wearable power assist leg[J]. Micronanoelectronic Technology, 2007, 44(7):353-357.
[3] STEGER R, KIM S H, KAZEROONI H. Control scheme and networked control architecture for the Berkeley lower extremity exoskeleton (BLEEX)[C]//Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, May 15-19, 2006.
[4] KAZEROONI H, STEGER R, HUANG L. Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX)[J]. The International Journal of Robotics Research, 2006, 25(5/6):561-573.
[5] HAYASHI T, KAWAMOTO H, SANKAI Y. Control method of robot suit HAL working as operator's muscle using biological and dynamical information[C]//2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Alberta, Aug.2-6, 2005.
[6] KAWAMOTO H, SANKAI Y. Power assist method based on phase sequence and muscle force condition forhal[J]. Advanced Robotics, 2005, 19(7):717-734.
[7] SUZUKI K, MITO G, KAWAMOTO H, et al. Intention-based walking support for paraplegia patients with robot suit HAL[J]. Advanced Robotics, 2007, 21(12):1441-1469.
[8] TSUKAHARA A, KAWANISHI R, HASEGAWA Y, et al. Sit-to-stand and stand-to-sit transfer support for complete paraplegic patients with robot suithal[J]. Advanced Robotics, 2010, 24(11):1615-1638.
[9] De ROSSI S M, VITIELLO N, LENZI T, et al. Soft artificial tactile sensors for the measurement of human-robot interaction in the rehabilitation of the lower limb[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Aug.31-Sep.4, 2010.
[10] 杨金江.助力型下肢外骨骼机器人多信号融合感知系统研究[D].杭州:浙江大学机械工程学院,2016:30-31. YANG Jin-jiang. Research on the multi-sensor fusion sensing system for lower exoskeleton robot[D]. Hangzhou:Zhejiang University, School of Mechanical Engineering, 2016:30-31.
[11] CIKAJLO I, MATJA?IC' Z, BAJD T. Efficient FES triggering applying Kalman filter during sensory supported treadmill walking[J]. Journal of Medical Engineering & Technology, 2008, 32(2):133-144.
[12] BENNETT T, JAFARI R, GANS N. An extended Kalman filter to estimate human gait parameters and walking distance[C]//American Control Conference, Washington, DC, Jun.17-19, 2013.
[13] COOPER G, SHERET I, MCMILLIAN L, et al. Inertial sensor-based knee flexion/extension angle estimation[J]. Journal of Biomechanics, 2009, 42(16):2678-2685.
[14] JAKOB C,KUGLER P, HEBENSTREIT F, et al. Estimation of the knee flexion-extension angle during dynamic sport motions using body-worn inertial sensors[C]//Proceedings of the 8th International Conference on Body Area Networks, Boston, Massachusetts, Sep.30-Oct.2, 2013.
[15] KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82(1):35-45.

[1] GUO Bing-jing, MAO Yong-fei, HAN Jian-hai, LI Xiang-pan, MA Jin-qi. Human-robot interactive information sensing system for gait rehabilitation training robot[J]. Chinese Journal of Engineering Design, 2019, 26(3): 252-259.