Please wait a minute...
工程设计学报  2018, Vol. 25 Issue (6): 647-654    DOI: 10.3785/j.issn.1006-754X.2018.06.004
保质设计     
预应力钢筒混凝土管端口打磨机器人的压紧力可靠性分析
崔国华1,2, 崔康康1, 吴海淼1, 张艳伟2, 刘健1
1. 河北工程大学 机械与装备工程学院, 河北 邯郸 056038;
2. 上海工程技术大学 智能机器人研发中心, 上海 201620
Reliability analysis for pressing force of prestressed concrete cylinder pipe port grinding robot
CUI Guo-hua1,2, CUI Kang-kang1, WU Hai-miao1, ZHANG Yan-wei2, LIU Jian1
1. College of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan 056038, China;
2. Intelligent Robot Research and Development Center, Shanghai University of Engineering Science, Shanghai 201620, China
 全文: PDF(2523 KB)   HTML
摘要:

预应力钢筒混凝土管(prestressed concrete cylinder pipe,PCCP)在水利工程、工业供水等领域得到广泛应用。针对现有PCCP端口打磨方法效率低、打磨质量难以保证等问题,创新设计了一种PCCP承、插口打磨机器人。首先,根据工作服役环境要求,对端口打磨机器人进行了结构设计与样机制作,并通过现场试验分析该机器人的打滑失效问题;其次,根据打磨机器人克服摩擦力环绕承、插口作周向转动的打磨过程,在进行力学分析基础上建立其压紧力模型及可靠性模型,并采用随机摄动方法分析了整个打磨过程的动态可靠度,得到该打磨机器人可靠性最低的关键部位;最后,对影响端口打磨机器人可靠性的参数进行了灵敏度分析,得出使端口打磨机器人最快趋向可靠的参数为从动轮半径。研究结果为研发具有自主知识产权的大型PCCP自动化制造装备及进行下一步可靠性优化设计奠定了基础。

关键词: 预应力钢筒混凝土管端口打磨机器人压紧力模型可靠性灵敏度    
Abstract:

Prestressed concrete cylinder pipe (PCCP) is widely used in water conservancy projects, industrial water supply and so on. In view of the problems of inefficient and difficult to guarantee the quality of PCCP port grinding, a grinding robot for socket and spigot of PCCP is innovatively designed. First of all, according to the requirements of working in-service environment, the structure design and prototype production for the port grinding robot were carried out, and the skidding failure of the robot was analyzed by field test. Secondly, according to the grinding process that the grinding robot overcoming the frictional force to make a circumferential rotation around the pipe port, the pressing force model and reliability model were established on the basis of mechanical analysis. The dynamic reliability of the whole grinding process was analyzed using the stochastic perturbation method. The key part of the grinding robot with the lowest reliability was obtained. Finally, the working parameters affecting the reliability sensitivity of the port grinding robot were analyzed, and it was concluded that the parameter making the port grinding robot towards reliability fastest was from the radius of the driving wheel. The research results lay the foundation for the development of large-scale PCCP automated manufacturing equipment with independent intellectual property rights and the subsequent reliability optimization design.

Key words: prestressed concrete cylinder pipe    port grinding robot    pressing force model    reliability    sensitivity
收稿日期: 2018-05-18 出版日期: 2018-12-28
CLC:  TP202.1  
基金资助:

国家自然科学基金资助项目(51775165);河北省自然科学基金资助项目(E2015402130)

通讯作者: 吴海淼(1982-),女,河北衡水人,副教授,博士,从事机电产品可靠性研究,E-mail:wuhaimiao@163.com     E-mail: wuhaimiao@163.com
作者简介: 崔国华(1975-),男,河北衡水人,教授,博士,从事机器人机械学、机器人化施工装备及其可靠性研究,E-mail:ghcui@hebeu.edu.cn,https://orcid.org/0000-0001-9813-3159
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
崔国华
崔康康
吴海淼
张艳伟
刘健

引用本文:

崔国华, 崔康康, 吴海淼, 张艳伟, 刘健. 预应力钢筒混凝土管端口打磨机器人的压紧力可靠性分析[J]. 工程设计学报, 2018, 25(6): 647-654.

CUI Guo-hua, CUI Kang-kang, WU Hai-miao, ZHANG Yan-wei, LIU Jian. Reliability analysis for pressing force of prestressed concrete cylinder pipe port grinding robot[J]. Chinese Journal of Engineering Design, 2018, 25(6): 647-654.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2018.06.004        https://www.zjujournals.com/gcsjxb/CN/Y2018/V25/I6/647

[1] 胡少伟,沈捷,王东黎,等.超大口径预存裂缝的预应力钢筒混凝土管结构分析与试验研究[J].水利学报,2010,41(7):876-882. HU Shao-wei, SHEN Jie, WANG Dong-li, et al. Experiment and numerical analysis on super caliber prestressed concrete cylinder pipes with cracks[J]. Journal of Hydraulic Engineering, 2010, 41(7):876-882.
[2] 彭寿海.超大口径预应力钢筒混凝土管(PCCP)结构分析[D].北京:清华大学水利水电工程系,2009:1-12. PENG Shou-hai. Structural analysis of PCCP with super-large diameter prestressed cylinder concrete pipe[D]. Beijing:Tsinghua University, Department of Water Resources and Hydropower Engineering, 2009:1-12.
[3] 窦铁生,程冰清,胡赫,等.预应力钢筒混凝土管结构变形规律的原型试验研究Ⅰ:内压[J].水利学报,2017,48(12):1438-1446. DOU Tie-sheng, CHENG Bing-qing, HU He, et al. The prototype test study of prestressed concrete cylinder pipe structure deformation law Ⅰ:the internal pressure[J]. Journal of Hydraulic Engineering, 2017, 48(12):1438-1446.
[4] 乔俊宏,马祥,徐建忠,等.一种PCCP管打磨装置:CN104227541A[P].2014-12-24. QIAO Jun-hong, MA Xiang, XU Jian-zhong, et al. A PCCP pipe grinding device:CN104227541A[P]. 2014-12-24.
[5] 严家琛.大口径金属螺旋管内壁焊缝自动跟踪打磨机器人的研制[D].上海:东华大学机电工程系,2017:4-58. YAN Jia-Chen. Development of automatic tracking and grinding robot for inner wall weld of large caliber metal spiral pipe[D]. Shanghai:Donghua University, Department of Mechanical Engineering, 2017:4-58.
[6] PEI Yu. Research and application of piping inside grinding robots in nuclear power plant[J]. Energy Procedia, 2017, 127:54-59.
[7] 唐德威,李庆凯,姜生元,等.具有差动运动功能的管道机器人设计与分析[J].机械工程学报,2011,47(13):1-8. TANG De-wei, LI Qing-kai, JIANG Sheng-yuan, et al. Design and analysis of a pipeline robot with the function of differential movement[J]. Journal of Mechanical Engineering, 2011, 47(13):1-8.
[8] NAYAK Ankit, PRADHAN S K. Design of a new in-pipe inspection robot[J]. Procedia Engineering, 2014, 97:2081-2091.
[9] MATEOS Luis A, VINCZE Markus. DeWaLoP in-pipe robot embedded system[J]. IFAC Proceedings Volumes, 2012, 45(22):842-847.
[10] ZHU C. In-pipe robot for inspection and sampling tasks[J]. Industrial Robot-An International Journal, 2007, 34(1):39-45.
[11] ZINM R A M, SAHARI K S M, SAAD J M, et al. Development of a low cost small sized in-pipe robot[J]. Procedia Engineering, 2012, 41:1469-1475.
[12] 孙传智,李爱群,缪长青,等.大跨V形刚构桥标高控制动态可靠性及灵敏度研究[J].应用基础与工程科学学报,2012,20(5):886-894. SUN Chuan-zhi, LI Ai-qun, MIU Chang-qing, et al. Research on dynamic reliability and reliability sensitivity of elevation control for long span V-shaped rigid frame bridge[J]. Journal of Basic Science and Engineering, 2012, 20(5):886-894.
[13] 王新刚,张义民,王宝艳.机械零部件的动态可靠性灵敏度分析[J].机械工程学报,2010,46(10):188-193. WANG Xin-gang, ZHANG Yi-min, WANG Bao-yan. Dynamic reliability sensitivity analysis of mechanical parts[J]. Journal of Mechanical Engineering, 2010, 46(10):188-193.
[14] WANG Wei, ZHANG Yi-min, LI Chang-you. Dynamic reliability analysis of linear guides in positioning precision[J]. Mechanism and Machine Theory, 2017, 116:451-464.
[15] 张义民,贺向东,刘巧伶.螺旋管簧的可靠性鲁棒设计[J].应用基础与工程科学学报,2003,11(4):419-424. ZHANG Yi-min, HE Xiang-dong, LIU Qiao-ling. Reliability-based robust design for coil tube-spring[J]. Journal of Basic Science and Engineering, 2003, 11(4):419-424.
[16] 杨周.非正态分布参数的机械构件的可靠性灵敏度和可靠性稳健设计[D].沈阳:东北大学机械工程系,2010:11-41. YANG Zhou. Reliability-based sensitivity and reliability-based robust design of mechanical components with non-normal random variables[D]. Shenyang:Northeastern University, Department of Mechanical Engineering, 2010:11-41.
[17] 张义民,刘仁云,贺向东.非正态分布参数的机械联接件的可靠性灵敏度设计[J].机械设计与研究,2005,21(1):4-7. ZHANG Yi-min, LIU Ren-yun, HE Xiang-dong. Reliability sensitivity of mechanical joints with non-normal distribution parameters[J]. Machine Design and Research, 2005, 21(1):4-7.
[18] WANG Pan, LU Zhen-zhou, HU Ji-xiang, et al. Sensitivity analysis of the variance contributions with respect to the distribution parameters by the kernel function[J]. Computers & Mathematics with Applications, 2014, 67(10):1756-1771.
[1] 况雨春,钟辉,钟良春. 类圆弧线型螺杆马达的设计与研究[J]. 工程设计学报, 2023, 30(5): 640-649.
[2] 李江昊,肖文生,于文太,王鸿雁,刘顺庆,孙友福. 超深水打桩锤系统的可靠性分析与分配研究[J]. 工程设计学报, 2023, 30(4): 485-494.
[3] 郭鸿杰,梁淑雅,陈文华,钟立强,陈哲文,颜佳辉. 线簧丝倾角对线簧孔式电连接器贮存寿命的影响研究[J]. 工程设计学报, 2023, 30(3): 390-398.
[4] 张正峰,宋小雨,袁晓磊,陈文娟,张伟东. Al/CFRP混合薄壁结构耐撞性能可靠性优化设计[J]. 工程设计学报, 2022, 29(6): 720-730.
[5] 王晨,高波,杨旭. Stewart式六维力传感器轻量化设计[J]. 工程设计学报, 2022, 29(4): 419-429.
[6] 陶晓东, 郭安福, 李辉, 韩伟, 李万才, 李涛. 基于灵敏度分析的盘式开沟机性能分析及优化[J]. 工程设计学报, 2022, 29(1): 59-65.
[7] 陈振, 李涛, 薛晓伟, 周阳, 敬爽, 陈言. 基于模糊综合评价法的可控震源振动器平板疲劳可靠性分析与优化[J]. 工程设计学报, 2021, 28(4): 415-425.
[8] 刘若晨, 徐成, 王奎洋, 王益民, 孙见忠. 新型磨损区域静电传感器特性参数研究[J]. 工程设计学报, 2020, 27(5): 645-653.
[9] 王艾伦, 刘乐, 刘庆亚. 基于Kriging代理模型的拉杆组合转子强度可靠性研究[J]. 工程设计学报, 2019, 26(4): 433-440.
[10] 唐林, 许志沛, 贺田龙, 敖维川. 基于BP神经网络的转动架稳定性灵敏度分析[J]. 工程设计学报, 2018, 25(5): 576-582.
[11] 张日成, 赵炯, 吴青龙, 熊肖磊, 周奇才, 焦洪宇. 考虑结构稳定性的变密度拓扑优化方法[J]. 工程设计学报, 2018, 25(4): 441-449.
[12] 谢经伟, 黎放, 陈童, 尹东亮. 考虑使用与维修优先权的冷贮备系统可靠性模型分析[J]. 工程设计学报, 2018, 25(3): 315-320.
[13] 文瑞桥, 杨梦鸥, 刘涛, 张均富. 机器人的运动时变可靠性分析[J]. 工程设计学报, 2018, 25(1): 50-55.
[14] 陆凤仪, 赵科渊, 徐格宁, 戚其松. 基于多源信息融合及模糊故障树的小子样可靠性评估[J]. 工程设计学报, 2017, 24(6): 609-617.
[15] 张根保, 徐付伟, 冉琰, 章小刚. 机械结构相似度评价及可靠性预计研究[J]. 工程设计学报, 2017, 24(3): 264-272.