Please wait a minute...
工程设计学报  2016, Vol. 23 Issue (6): 578-584    DOI: 10.3785/j.issn.1006-754X.2016.06.009
建模、分析、优化和决策     
基于二次回归正交设计的啮合齿轮表面温度分析
王春华, 王仲娴, 许瀚文
辽宁工程技术大学 机械工程学院, 辽宁 阜新 123000
Analysis of meshing gear surface temperature based on quadratic regression orthogonal design
WANG Chun-hua, WANG Zhong-xian, XU Han-wen
College of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China
 全文: PDF(929 KB)   HTML
摘要:

为了缓解齿轮在啮合传动过程中齿面产生的局部高温导致齿轮表面固有熔焊粘附的问题,基于二次回归正交设计方法设计了27组因素水平试验,利用ANSYS软件对单个齿轮通过添加边界条件进行有限元分析,得到单个齿轮本体最高温度.通过Design-Expert软件对试验数据进行分析处理,得出:齿轮的转速z1、齿轮的转矩z2、齿轮的齿宽z3和齿轮压力角z4均方分别为556.82,1 813.69,278.17,20.02,即影响齿轮本体最高温度响应值的四因素主次顺序为齿轮的转矩z2、齿轮的转速z1、齿轮的齿宽z3和齿轮压力角模数z4;齿轮本体最高温度会随着齿轮的转速z1、齿轮的转矩z2和齿轮的齿宽z3增大而增大;齿轮本体最高温度随着齿轮压力角z4增大而减小.这一结论为齿轮的设计提供借鉴意义.

关键词: 二次回归正交设计Design-Expert啮合齿轮温度    
Abstract:

In order to alleviate the inherent problems which appear welding bond on the gear tooth surface caused by local high temperature in the process of meshing transmission, 27 groups of factors level test were designed based on quadratic regression orthogonal design method, a single tooth was analyzed using ANSYS software by adding boundary conditions, and the highest temperature of a single tooth was got by using the Design-Expert software to analyze the test data. The results showed that the mean square of speed z1, torque z2, gear tooth width z3 and gear pressure angle z4 was 556.82, 1813.69, 278.17, 20.02, respectively. The order of four factors affected the highest temperature of tooth body was torque z2, speed z1, gear tooth width z3, gear pressure angle z4; the highest temperature of gear body would increase with the increase of speed z1, torque z2 and gear tooth width z3, the highest temperature of gear body would decrease with the increase of gear pressure angle z4. The conclusion has reference value to the gear design.

Key words: quadratic regression orthogonal design    Design-Expert    meshing gear    temperature
收稿日期: 2015-05-25 出版日期: 2016-12-28
CLC:  TH132.4  
基金资助:

国家自然科学基金资助项目(51374120).

作者简介: 王春华(1963-),女,辽宁丹东人,教授,博士,从事机械设计及理论、机械系统动态特性与控制等研究,E-mail:837113663@qq.com.http://orcid.org//0000-0002-0291-4653
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王春华
王仲娴
许瀚文

引用本文:

王春华, 王仲娴, 许瀚文. 基于二次回归正交设计的啮合齿轮表面温度分析[J]. 工程设计学报, 2016, 23(6): 578-584.

WANG Chun-hua, WANG Zhong-xian, XU Han-wen. Analysis of meshing gear surface temperature based on quadratic regression orthogonal design. Chinese Journal of Engineering Design, 2016, 23(6): 578-584.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2016.06.009        https://www.zjujournals.com/gcsjxb/CN/Y2016/V23/I6/578

[1] 黄永晶,阮文韬,宫霞霞.模糊神经网络技术在齿轮热分析中的应用[J].制造业自动化,2012,34(7):76-78. HUANG Yong-jing,RUAN Wen-tao,GONG Xia-xia.The application of fuzzy neural network technology in gear thermal analysis[J].Manufacturing Automation,2012,34(7):76-78.
[2] 孙首群,朱卫光,赵玉香.渐开线轮齿温度场影响因素分析[J].机械设计,2009,26(2):59-62. SUN Shou-qun,ZHU Wei-guang,ZHAO Yu-xiang.Involute gear temperature field influence factor analysis[J].Journal of Mechine Design,2009,26(2):59-62.
[3] 何国旗,严宏志,胡威,等.面齿轮啮合过程中压力角对齿面摩擦生热的影响分析[J].中南大学学报(自然科学版),2012,43(9):3415-3419. HE Guo-qi,YAN Hong-zhi,HU Wei,et al.Influence of pressure angle on friction heat during face-gear meshing process[J].Journal of Central South University (Science and Technology),2012,43(9):3415-3419.
[4] 陈磊,马希直.基于ANSYS的高速齿轮温度场研究[J].机械制造与研究,2009,38(2):110-112. CHEN Lei,MA Xi-zhi.Temperature analysis of high speed gear based on ANSYS[J].Journal of Machinery Manufacturing and Research,2009,38(2):110-112.
[5] 王胜伟,何瑛,何国旗,等.面齿轮啮合齿面瞬态温度场影响因素的仿真分析[J].湖南工业大学学报,2014,5(2):110-112. WANG Sheng-wei,HE Ying,HE Guo-qi,et al.Surface gear mesh surface transient temperature field simulation analysis of influencing factors[J].Journal of Hunan University of Technology,2014,5(2):110-112.
[6] 龙慧,张光辉,罗文军.旋转齿轮瞬时接触应力和温度的分析模拟[J].机械工程学报,2004,40(8):24-29. LONG Hui,ZHANG Guang-hui,LUO Wen-jun.Rotary gear instantaneous contact stress and temperature analysis of the simulation[J].Journal of Mechanical Engineering,2004,40(8):24-29.
[7] 刘彩霞,孙振元,刘军,等.利用二次回归正交设计优化香石竹叶片再生体系中6-BA和NAA的浓度组合[J].核农学报,2008,22(1):45-48. LIU Cai-xia,SUN Zhen-yuan,LIU Jun,et al.Application of quadratic regressive orthogonal design to optimize regeneration system of dianthus caryophyllus L[J].Journal of Nuclear Agricultural Sciences,2008,22(1):45-48.
[8] 工惠,吴兆亮,童应凯,等.应用二次回归正交旋转组合设计优化黄霉素发酵培养基[J].食品研究与开发,2006,27(6):19-24. GONG Hui,WU Zhao-liang,TONG Ying-kai,et al.Optimization of the flavomycin fermentation medium by the design of rotation-regression-orthogonal combination[J].Food Research and Development,2006,27(6):19-24.
[9] 朱彩平,曹慧.应用二次回归旋转正交组合设计提取平菇多糖的工艺研究[J].中药材,2010,33(9):1490-1494. ZHU Cai-ping,CAO Hui.Application of quadratic regression orthogonal rotating combination design extraction mushroom polysaccharide technology was studied[J].Journal of Chinese Medicinal Materials,2010,33(9):1490-1494.
[10] 马文杰,郭玉蓉,魏决.应用二次回归旋转正交组合设计提取水溶性苹果多糖的工艺研究[J].食品科学,2009,30(20):105-108. MA Wen-jie,GUO Yu-rong,WEI Jue.Optimization of water-soluble apple polysaccharides extraction using quadratic orthogonal rotation combination design[J].Food Science,2009,30(20):105-108.
[11] 韩秀慧,尹伟伦,工华芳.二次回归正交设计在微型月季组织培养中的应用[J].林业科学,2004,40(4):189-192. HAN Xiu-hui,YI Wei-lun,GONG Hua-fang.Application of quadratic regressive factorial experiment to in vitro culture of miniature rose[J].Scientia Silvae Sinicae,2004,40(4):189-192.
[12] 李志西,杜双奎.试验优化设计与统计分析[M].北京:科学出版社,2010:226-235. LI Zhi-xi,DU Shuang-kui.Test optimization design and statistical analysis[M].Beijing:Science Press,2010:226-235.
[13] LONG H, LORD A A,GETHIN D T,et al.Operating temperatures of oil-lubricated edium-speed gears numerical models and experimental results[J].Journal of Aerospace Engineering,2003,217(2):87-106.
[14] 龙慧.高速齿轮传动轮齿的温度模拟及过程参数的敏感性分析[D].重庆:重庆大学机械工程学院,2001:16-76. LONG Hui.Modelling of surface temperature in high-speed gears and sensitivity analysis[D].Chongqing:Chongqing University, College of Mechanical Engineering, 2001:16-76.
[15] 徐向宏,何明珠.试验设计与Design-Expert、SPSS应用[M].北京:科学出版社,2010:146-157. XU Xiang-hong,HE Ming-zhu.The test design and the Design-Expert,SPSS application[M].Beijing:Science Press,2010:146-157.

[1] 祝效华,李聪,刘伟吉,谭宾,徐文. 强研磨性地层中PDC钻头井底热--固三场耦合研究[J]. 工程设计学报, 2022, 29(4): 446-455.
[2] 唐绍禹,吴杰,张辉,邓兵兵,黄禹铭,黄浩. 多极式磁流变离合器温度场仿真与实验研究[J]. 工程设计学报, 2022, 29(4): 484-492.
[3] 樊霄岳, 刘启, 官威, 朱云, 陈苏琳, 沈彬. 电磁微锻机构热效应模拟与实验研究[J]. 工程设计学报, 2022, 29(1): 66-73.
[4] 钟良春, 况雨春, 舒峰, 张聪. 考虑压力与温度影响的螺杆马达过盈量设计方法[J]. 工程设计学报, 2021, 28(3): 321-328.
[5] 王超, 孙文旭, 马晓静, 陈纪旸, 栾义忠, 马思乐. 基于模糊控制的HVPE生长设备温度控制系统[J]. 工程设计学报, 2020, 27(6): 765-770.
[6] 武聪魁, 何柏岩, 袁鹏飞. 计及金属铰链的环形可展天线热-结构分析[J]. 工程设计学报, 2020, 27(3): 349-356.
[7] 黄泽好, 张振华, 黄旭, 雷伟. 鼓式制动器制动不稳定时变特性分析[J]. 工程设计学报, 2019, 26(6): 714-721.
[8] 孔德帅, 胡高峰, 张冠伟, 张大卫. 压电驱动器可控预紧力主轴设计及性能分析[J]. 工程设计学报, 2019, 26(6): 743-752.
[9] 蒋宏婉. 硬质合金车刀改进前后切削能对比研究[J]. 工程设计学报, 2019, 26(6): 700-705.
[10] 谭慧, 宗宽, 熊长武, 翁夏, 杜平安. 叶脉型微通道热沉设计及散热特性分析[J]. 工程设计学报, 2019, 26(4): 477-483.
[11] 杨莺, 叶学龙, 叶超. 超深矿井提升机制动盘热性能分析与优化[J]. 工程设计学报, 2019, 26(1): 47-55.
[12] 王恒, 孙小明, 邵彦, 肖后昆, 张小龙. 基于试验台架的轮胎测温系统研究[J]. 工程设计学报, 2018, 25(5): 590-596.
[13] 聂明争, 范勤, 王雄, 李知存. FDM技术中加热底板样式对翘曲变形的影响研究[J]. 工程设计学报, 2018, 25(4): 420-425,440.
[14] 卢燕, 王珏, 凌明祥, 杜平安. 精密离心机热变形多物理场耦合数值计算[J]. 工程设计学报, 2016, 23(1): 49-53,73.
[15] 胡俊峰,郝亚洲,郑昌虎. 减小温度效应的精密微操作平台稳健优化设计[J]. 工程设计学报, 2015, 22(6): 581-588.