Please wait a minute...
工程设计学报  2011, Vol. 18 Issue (1): 38-42    
工程设计理论、方法与技术     
基于精确齿面建模的ZA蜗杆蜗轮有限元接触分析
 李立新, 江玉刚, 曹谊勃
浙江大学 机械设计研究所,浙江 杭州 310027
Finite element analysis of contact between ZA worm and worm gearbased on precise tooth surface model
 LI  Li-Xin, JIANG  Yu-Gang, CAO  Yi-Bo
Mechanical Design Institute, Zhejiang University, Hangzhou 310027, China
 全文: PDF(4485 KB)   HTML
摘要: 为了研究不同情况下蜗杆蜗轮间的接触应力和蜗杆扭转角与驱动力矩之间的关系,根据齿面方程建立具有精确齿面的ZA蜗杆蜗轮实体模型,利用ANSYS对此模型在同一载荷不同啮合位置和同一啮合位置不同载荷条件下进行有限元接触分析,研究在一个轮齿啮合周期内,各啮合齿对的接触应力分布和载荷在不同齿对上的分配情况.分析结果表明:理论接触应力计算公式给出的结果远小于实际的最大接触应力,同时得到由接触齿对弹性变形引起的蜗杆扭转角与驱动力矩之间的幂函数关系,可以用于蜗轮转角的精确控制.
关键词: ZA蜗杆有限元分析接触应力力矩扭转角    
Abstract: To make research on contact stress between worm and worm gear under different circumstances, and the relationship between the torsion angle of the worm and the driving torque, solid models with precise tooth surface of a ZA worm and worm gear were established based on tooth surface equations. Using these models, finite element analysis of contact was performed with ANSYS at different meshing locations under the same load and at the same meshing location under different loads, and the contact stress distribution on different meshing teeth and the load distribution among them were studied in a meshing cycle. The analysis results show that the contact stress calculated by the theoretical formula is quite smaller than the actual maximum, and that a power function is discovered between the driving torque and the torsion angle of the worm caused by elastic deformation of contact teeth, which can be used in precise angle control of the worm gear.
Key words: ZA worm    finite element analysis    contact stress    torque    torsion angle
出版日期: 2011-02-28
CLC:  TH 132.4  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李立新
江玉刚
曹谊勃

引用本文:

李立新, 江玉刚, 曹谊勃. 基于精确齿面建模的ZA蜗杆蜗轮有限元接触分析[J]. 工程设计学报, 2011, 18(1): 38-42.

LI Li-Xin, JIANG Yu-Gang, CAO Yi-Bo. Finite element analysis of contact between ZA worm and worm gearbased on precise tooth surface model. Chinese Journal of Engineering Design, 2011, 18(1): 38-42.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/        https://www.zjujournals.com/gcsjxb/CN/Y2011/V18/I1/38

[1]齿轮手册编委会. 齿轮手册(上册)[M]. 北京:机械工业出版社,1995:24-25.

Gear Manual Committee. Gear manual (Volume I) [M]. Beijing: China Machine Press, 1995:24-25.

[2]吴鸿业,华崇志.用有限元法研究蜗杆副轮齿承载状况[J].机械工程学报,1991,27(4):30-37.

WU Hong-ye, HUA Chong-zhi. A study of strength of worm gearing by using finite element method [J].Chinese Journal of Mechanical Engineering, 1991,27(4): 30-37.

[3]李云堂.圆弧齿圆柱蜗杆副蜗轮齿的有限元分析[J]. 机械设计, 2004, 21(4): 59-61.

LI Yuntang. Finite element analysis of worm gear in the circular-cylinder worm gear[J]. Journal of Machine Design, 2004, 21(4):59-61.

[4]孙月海,肖延萍,陈东祥.TI蜗杆传动参数化造型与齿面接触分析[J]. 机械传动,2005,29(5): 1-3.

SUN Yue-hai, XIAO Yan-ping, CHEN Dong-xiang. Parametric modeling and analysis of tooth contact of TI worm gear[J]. Journal of Mechanical Drive, 2005, 29(5):1-3.

[5]罗良清.渐开线蜗杆接触应力及传动效率的研究[D].武汉:武汉理工大学机电工程学院,2006.

LUO Liang-qing. Study on the contact stress and transmission efficiency of the involutes worm-drive[D]. Wuhan: Wuhan University of Technology, College of Mechanical & Electrical Engineering, 2006.

[6]胡福文. ZK蜗杆蜗轮的三维造型及有限元仿真分析[D]. 济南:山东大学机械工程学院,2008.

HU Fu-wen.3D modeling and finite element analysis of ZK worm and worm gear[D]. Jinan: Shandong University, School of Mechanical Engineering, 2008.

[7]江磊,王玉兰. 基于SolidWorks的阿基米德蜗杆蜗轮建模方法探讨[J].机械与电子,2007(3):67-70.

JIANG Lei, WANG Yu-lan. Study on the method of modeling archimedes worm and worm wheel based on Solid Works [J]. Machinery and Electronics,2007(3):67-70.

[8]柯常忠,张勇波. 阿基米德蜗杆蜗轮在Pro/E中的精确建模研究[J].机械,2005(S1):66-68.

KE Chang-zhong, ZHANG Yong-bo. Study on precise modeling of Archimedes worm and worm gear based on Pro/E [J]. Machinery, 2005(S1): 66-68.

[9]李俊源.基于SolidWorks的蜗轮蜗杆三维参数化设计[J].长春理工大学学报,2006, 29(1):98-100.

LI Jun-yuan. Parametric 3D-design for worm and worm gear based on SolidWorks [J]. Journal of Changchun University of Science and Technology, 2006, 29(1):98-100.

[10]蔡磊,罗良清,李志明.阿基米德蜗杆零件实体建模研究[J].湖北工业大学学报,2006,21(3):152-153.

CAI Lei, LUO Liang-qing, LI Zhi-ming. Study on solid modeling of straight slide axial worm parts[J]. Journal of Hubei University of Technology, 2006, 21(3):152-153.

[11]罗君扬,林述温,叶仲和,等.基于Pro/E的蜗轮传动三维造型研究[J].机电技术,2004(1): 20-23.

LUO Jun-yang, LIN Shu-wen, YE Zhong-he, et al. Study on the 3D-modeling of worm-gear based on Pro/E [J]. Mechanical and Electrical Technology, 2004(1):20-23.
[12]李立新,曹谊勃. 基于双三次B样条曲面的ZA蜗轮实体建模方法[J]. 工程设计学报. 2009, 16(4): 286-291.

LI Li-xin, CAO Yi-bo. Solid modeling method of ZA worm-gears based on bicubic B-spline surfaces [J]. Journal of Engineering Design, 2009, 16(4):286-291.

[13] 王树人,刘平娟. 圆柱蜗杆传动啮合原理[M].天津:天津科学技术出版社,1982.

WANG Shu-ren, LIU Ping-juan. Engagement theory of cylinder-worm drive [M]. Tianjin: Tianjin Scientific and Technical Publishers, 1982.
[1] 宁志强,卫立新,权龙,赵美卿,高有山. 变排量非对称轴向柱塞泵抗扰控制及并行整定方法[J]. 工程设计学报, 2022, 29(4): 401-409.
[2] 孙光明,王奕苗,万仟,弓堃,汪文津,赵坚. 考虑装配变形的精密机床床身优化设计[J]. 工程设计学报, 2022, 29(3): 318-326.
[3] 丰飞,傅雨晨,范伟,马举. 三角混合两级杠杆微位移放大机构的设计及性能分析[J]. 工程设计学报, 2022, 29(2): 161-167.
[4] 吴嘉懿, 岳阳, 李军业, 金志江, 钱锦远. 主给水调节阀节流窗口周向设计及其对流动特性的影响[J]. 工程设计学报, 2022, 29(1): 74-81.
[5] 陈洪月, 张站立, 吕掌权. 线性压缩机圆柱臂盘簧的设计及性能研究[J]. 工程设计学报, 2021, 28(4): 504-510.
[6] 王成军, 李帅. 三关节式软体驱动器的设计及其弯曲性能分析[J]. 工程设计学报, 2021, 28(2): 227-234.
[7] 周超, 秦瑞江, 芮晓明. 风载荷作用下V形绝缘子串的力学特性分析[J]. 工程设计学报, 2021, 28(1): 95-104.
[8] 黄伟, 徐建, 陆新征, 胡明祎, 廖文杰. 动力装备和建筑楼盖的动力吸振研究[J]. 工程设计学报, 2021, 28(1): 25-32.
[9] 周超, 王阳, 芮晓明. 500 kV输电线路跳线风偏有限元分析与试验研究[J]. 工程设计学报, 2020, 27(6): 713-719.
[10] 何芝仙, 陈曦, 时培成. 基于动力学分析的大重合度直齿圆柱齿轮强度计算[J]. 工程设计学报, 2020, 27(6): 729-734.
[11] 李成兵, 雷鹏. 5 000 m3立式拱顶储罐应力分析与弱顶性能评价[J]. 工程设计学报, 2020, 27(2): 182-190.
[12] 王飞, 龚国芳, 秦永峰. 转速受限条件下TBM刀盘混合驱动系统控制器设计[J]. 工程设计学报, 2019, 26(6): 722-727.
[13] 刘召, 由宏新, 孙亮, 杨玉玲, 刘华清. 大型球罐悬吊式液压传动回转检测平台设计[J]. 工程设计学报, 2019, 26(3): 267-273.
[14] 宋建虎. 某高轨星载数传天线的振动分析[J]. 工程设计学报, 2019, 26(3): 274-279.
[15] 唐东林, 李茂扬, 丁超, 魏子兵, 胡琳, 袁波. 轮式爬壁机器人转向稳定性研究[J]. 工程设计学报, 2019, 26(2): 153-161.