Please wait a minute...
工程设计学报  2019, Vol. 26 Issue (6): 722-727    DOI: 10.3785/j.issn.1006-754X.2019.00.002
建模、仿真、分析与决策     
转速受限条件下TBM刀盘混合驱动系统控制器设计
王飞, 龚国芳, 秦永峰
浙江大学 流体动力与机电系统国家重点实验室, 浙江杭州 310027
Controller design for the hybrid cutterhead driving system of TBMunder limited rotational speed condition
WANG Fei, GONG Guo-fang, QIN Yong-feng
State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1766 KB)   HTML
摘要: 传统全断面硬岩隧道掘进机(tunnel boring machine, TBM)刀盘转速同步控制方法是针对变频电机单一驱动源进行设计的,直接应用于混合驱动型TBM刀盘驱动系统易导致齿轮齿圈发生严重的偏载,显著降低TBM刀盘传动系统的使用寿命和TBM设备完好率。考虑到实际掘进过程中对刀盘转速的限制和系统参数漂移,采用自适应控制策略,针对电液混合驱动型TBM刀盘驱动系统设计基于驱动源力矩控制的转速控制方法。建立了齿轮齿圈传动系统模型,系统的参数不确定性得到充分考虑。通过MATLAB/AMESim联合仿真表明,该自适应控制系统对参数漂移具有补偿作用,在精确控制刀盘转速的同时,实现了不同类型驱动源间的负载力矩分配,原系统中的偏载问题得到了解决。电液混合驱动型TBM刀盘驱动系统通过液压马达和变频电机两种驱动源驱动特性的互补,有效提高了其地质适应性,并对提高掘进速度有着重要的作用。
关键词: 刀盘驱动TBM自适应控制负载力矩分配    
Abstract: The conventional cutterhead rotational speed control strategy of TBM (tunnel boring machine) designed for the single driving source of variable frequency motor causes serious bias load in the hybrid cutterhead mechanical transmission system, which decreases the component’s lifespan and TBM availability. Considering the constraints in the rotational speed and the parameter drift in the excavation process, an adaptive control strategy was used to design a rotational speed control system based on driving source torque control for the the electro-hydraulic hybrid cutterhead driving system (EHDS). The model of the gear-ring transmission system was established. The parametric uncertainty in the system was considered. The MATLAB/AMESim co-simulations results showed that the proposed adaptive control system could compensate the parameter drift, realized the load torque distribution between different types of driving sources while realizing the precise control of the cutterhead rotational speed. The bias load phenomena had been eliminated by the proposed adaptive control system. EHDS can effectively improve its geological adaptability and play an important role in improving the driving speed by complementing the driving characteristics of hydraulic motor and variable frequency motor.
Key words: cutterhead system    TBM    adaption control    load torque distribution
收稿日期: 2019-03-27 出版日期: 2019-12-28
CLC:  TU 43  
基金资助: 国家重点研发计划资助项目(2017YFB1302600);国家自然科学基金资助项目(51675472);国家重点基础研究发展计划(973计划)资助项目(2015CB058100)
通讯作者: 龚国芳(1963—),男,浙江宁波人,教授,博士生导师,从事电液控制系统集成、液压和液力传动等研究,E-mail:gfgong@zju.edu.cn, https://orcid.org// 0000-0001-9553-8783     E-mail: gfgong@zju.edu.cn
作者简介: 王飞(1991—),男,河南安阳人,博士生,从事大型隧道掘进装备电液控制及智能化研究,E-mail:tropicalfei@zju.edu.cn, https://orcid.org/0000-0002-7413-674X
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王飞
龚国芳
秦永峰

引用本文:

王飞, 龚国芳, 秦永峰. 转速受限条件下TBM刀盘混合驱动系统控制器设计[J]. 工程设计学报, 2019, 26(6): 722-727.

WANG Fei, GONG Guo-fang, QIN Yong-feng. Controller design for the hybrid cutterhead driving system of TBMunder limited rotational speed condition. Chinese Journal of Engineering Design, 2019, 26(6): 722-727.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2019.00.002        https://www.zjujournals.com/gcsjxb/CN/Y2019/V26/I6/722

[1] 周赛群.全断面硬岩掘进机(TBM)驱动系统研究[D]. 杭州:浙江大学机械工程学院, 2008:10-17. ZHOU Sai-qun. Sudy on drive system of tunnel boring machine[D]. Hangzhou:Zhejiang University, School of Mechanical Engineering, 2008: 10-17.
[2] MAIDL Bernhard, SCHMID Leonhard, RITZ Willy, et al. Hardrock tunnel boring machines[M]. Hamburg: John Wiley & Sons, 2008:17-29.
[3] LIAO Jian-feng, CHEN Zheng, YAO Bin. High-performance adaptive robust control with balanced torque allocation for the over-actuated cutter-head driving system in tunnel boring machine[J]. Mechatronics, 2017, 46: 168-176. doi:10.1016/j.mechatronics.2017.08.007
[4] JAMSHIDI A. Prediction of TBM penetration rate from brittleness indexes using multiple regression analysis[J]. Modeling Earth Systems and Environment, 2018, 4 (1): 383-394. doi:10.1007/s40808-018-0432-2
[5] XIE Hai-bo, GONG Hua-sheng, HU Liang, et al. Improving the extricating performance of TBM cutter-head driving system with hydro-viscous clutch[C]// 2016 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), Auckland,Aug. 29-31, 2016. doi:10.1109/MESA.2016.7587188
[6] WU Han-yang, HUO Jun-zhou, ZHANG Wei, et al. An electromechanical coupling model of TBM's main driving system[C]// 2016 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), Auckland,Aug. 29-31, 2016. doi:10.1109/MESA.2016.7587111
[7] GONG Qiu-ming, YIN Li-jun, MA Hong-su, et al. TBM tunnelling under adverse geological conditions: an overview[J]. Tunnelling and Underground Space Technology, 2016, 57:4-17. doi:10.1016/j.tust.2016.04.002
[8] LIU Tong,GONG Guo-fang,PENG Zuo, et al. Modeling and intelligent synchronous control for parallel-connected motor-gear driving system of TBM cutterhead[C]//Mechanics and Mechanical Engineering: Proceedings of the 2015 International Conference (MME2015), Chengdu, Dec. 25-27, 2015. doi:10.1142/9789813145603_0111
[9] SHAO Cheng-jun, LIAO Jian-feng, LI Xiu-liang, et al. An adaptive robust control for hard rock tunnel boring machine cutterhead driving system[C]// ASME 2015 Dynamic Systems and Control Conference, Columbus, Oct. 28-30, 2015. doi:10.1115/DSCC2015-9697
[10] SUN Dong, SHAO Xiao-yin, FENG Gang. A model-free cross-coupled control for position synchronization of multi-axis motions: theory and experiments[J]. IEEE Transactions on Control Systems Technology, 2007, 15 (2): 306-314. doi:10.3182/20050703-6-cz-1902.00400
[11] ZHANG Cheng-hui, SHI Qing-sheng, CHENG Jin. Synchronization control strategy in multi-motor systems based on the adjacent coupling error[J]. Proceedings of the Chinese Society of Electrical Engineering, 2007(15): 59-63. doi:10.1360/aas-007-0331
[12] ZHANG Kai-zhi, YU Hai-dong, LIU Zhong-po, et al. Dynamic characteristic analysis of TBM tunnelling in mixed-face conditions[J]. Simulation Modelling Practice and Theory, 2010, 18 (7): 1019-1031. doi:10.1016/j.simpat.2010.03.005
[13] KAWAMURA Atsuo, ITOH Hiroshi, SAKAMOTO Kiyoshi. Chattering reduction of disturbance observer based sliding mode control[J]. IEEE Transactions on Industry Applications, 1994, 30 (2): 456-461. doi:10.1109/28.287509
[14] LI Hong-yi, SHI Peng,YAO De-yin, et al. Observer-based adaptive sliding mode control for nonlinear Markovian jump systems[J]. Automatica, 2016, 64: 133-142. doi:10.1016/j.automatica.2015.11.007
[15] LIAO Jian-feng, YAO Bin, ZHU Xiao-cong. Adaptive robust coordinated control for over-actuated cutter-head driving systems of hard rock tunnel boring machines[J]. IFAC-PapersOnLine, 2016, 49 (21): 611-616. doi:10.1016/j.ifacol.2016.10.668
[16] YAO Bin, TOMIZUKA Masayoshi. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form[J]. Automatica, 1997, 33 (5): 893-900. doi:10.1016/s0005-1098(96)00222-1
[17] CHEN Shan, CHEN Zheng, YAO Bin, et al. Adaptive robust cascade force control of 1-DOF hydraulic exoskeleton for human performance augmentation[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22 (2): 589-600. doi:10.1109/TMECH.2016.2614987
[18] LYNN Alfred, SMID Edzko, ESHRAGHI Moji, et al. Modeling hydraulic regenerative hybrid vehicles using AMESim and Matlab/Simulink[C]// Enabling Technologies for Simulation Science IX, 2005: 24-41. doi:10.1117/12.603712
[1] 马长李, 刘聪, 马奔. 基于干扰观测器的波浪升沉模拟及自适应补偿策略研究[J]. 工程设计学报, 2019, 26(6): 728-735.
[2] 凌静秀, 孙伟, 杨晓静, 童昕. 多点分布载荷下TBM刀盘系统振动响应分析[J]. 工程设计学报, 2017, 24(3): 317-322.
[3] 石卓, 龚国芳, 刘统, 吴伟强, 彭左. TBM试验台支撑推进节能系统设计与仿真分析[J]. 工程设计学报, 2017, 24(3): 323-329.
[4] 陈浩, 吴定定, 饶国希, 赵旭昌. 电动负载模拟系统自适应控制系统设计[J]. 工程设计学报, 2017, 24(2): 217-224.
[5] 陆峰, 张弛, 孙健, 田军兴, 刘敏, 吴玉厚. 基于TBM双滚刀破岩仿真的实验研究[J]. 工程设计学报, 2016, 23(1): 41-48.
[6] 刘智光,于 菲,张 靓,李铁军,安占法. 基于模糊自适应阻抗控制的机器人接触力跟踪[J]. 工程设计学报, 2015, 22(6): 569-574.
[7] 刘 统,龚国芳,张 振,彭 左,吴伟强. TBM试验台刀盘混合驱动系统设计与仿真分析[J]. 工程设计学报, 2015, 22(5): 438-444.
[8] 张 振,龚国芳,饶云意,吴伟强,刘 统. TBM试验台支撑推进液压系统设计与仿真分析[J]. 工程设计学报, 2015, 22(5): 324-329.
[9] 张 振,龚国芳,饶云意,吴伟强,刘 统. TBM试验台支撑推进液压系统设计与仿真分析[J]. 工程设计学报, 2015, 22(4): 324-329.
[10] 杨忠炯,鲁耀中,周立强,李洪宾. 基础振动下TBM推进液压系统工作特性研究[J]. 工程设计学报, 2015, 22(3): 278-283.
[11] 马明智, 芮延年, 张飞, 乔冬冬. 基于可拓自适应理论的三轴并联机器人控制系统设计[J]. 工程设计学报, 2012, 19(1): 53-56.
[12] 刘峰, 龚国芳, 石元奇, 朱北斗. 基于自适应控制技术的盾构掘进监控系统[J]. 工程设计学报, 2010, 17(4): 302-306.
[13] 李鸣, 胡先志, 付辉, 黄惠娟. 基于电加热炉的温度控制策略[J]. 工程设计学报, 2007, 14(6): 482-485.