Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (4): 491-501    DOI: 10.3785/j.issn.1006-754X.2024.03.219
优化设计     
基于改进滑模控制的悬臂式掘进机轨迹跟踪技术
张旭辉1,2(),李语阳1,杨文娟1,2,张超1,郑西利1,麻兵1
1.西安科技大学 机械工程学院,陕西 西安 710054
2.陕西省矿山机电装备智能检测与控制重点实验室,陕西 西安 710054
Trajectory tracking technology for boom-type roadheader based on improved sliding mode control
Xuhui ZHANG1,2(),Yuyang LI1,Wenjuan YANG1,2,Chao ZHANG1,Xili ZHENG1,Bing MA1
1.College of Mechanical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
2.Shaanxi Key Laboratory of Intelligent Detection and Control for Mining Electromechanical Equipment, Xi'an 710054, China
 全文: PDF(2355 KB)   HTML
摘要:

针对传统滑模控制在悬臂式掘进机轨迹跟踪中存在全局收敛速度慢、抖振显著等不足,提出了一种基于新型趋近律的改进滑模控制方法。通过在传统指数趋近律基础上引入掘进机机身的横向偏差、航向角偏差以及幂次趋近项,实现了掘进机轨迹偏差的快速收敛以及抖振的削弱;同时,采用边界层法进一步抑制抖振,解决了趋近律中符号函数乘积项易引起抖振的问题。分析了新型趋近律的存在性、可达性以及稳定性,并推导了干扰稳态误差的区间。考虑掘进机的不确定扰动,对传统滑模控制与改进滑模控制方法进行了仿真对比。结果表明,改进滑模控制的控制精度、收敛速度及抗干扰能力均优于传统滑模控制。最后,通过搭建实验平台测试了掘进机轨迹跟踪控制系统的性能,验证了改进滑模控制方法的可行性和有效性。研究结果可为煤矿井下恶劣环境中采掘装备的智能控制提供重要参考。

关键词: 悬臂式掘进机新型趋近律轨迹跟踪滑模控制    
Abstract:

Aiming at the shortcomings of traditional sliding mode control in trajectory tracking of boom-type roadheader, such as slow global convergence and significant chattering, an improved sliding mode control method based on novel reaching law is proposed. By introducing lateral deviation and heading angle deviation of the roadheader body and adding power reaching term to the traditional exponential reaching law, the rapid convergence of trajectory deviation and chattering reduction for the roadheader were achieved. At the same time, the boundary layer method was employed to further suppress chattering, which addressed the problem of chattering easily caused by the product term of sign functions in the reaching law. The existence, reachability and stability of the novel reaching law were analyzed, and the interval of disturbance steady-state error was derived. Considering the uncertain disturbance of the roadheader, the simulation comparison was conducted between traditional sliding mode control method and improved sliding mode control method. The results indicated that the control accuracy, convergence speed and anti-interference ability of the improved sliding mode control were superior to the traditional sliding mode control. Finally, an experimental platform was set up to test the performance of the roadheader trajectory tracking control system, which verified the feasibility and effectiveness of the improved sliding mode control method. The research results can provide important reference for the intelligent control of mining equipment in the harsh environment of underground coal mine.

Key words: boom-type roadheader    novel reaching law    trajectory tracking    sliding mode control
收稿日期: 2023-11-28 出版日期: 2024-08-26
CLC:  TH 69  
基金资助: 国家自然科学基金资助项目(52104166);陕西省自然科学基础研究计划陕煤联合基金项目(2021JLM-03);中国博士后科学基金面上项目(2022MD723826);陕西省重点研发计划项目(2023-YBGY-063)
作者简介: 张旭辉(1972—),男,陕西凤翔人,教授,博士生导师,博士,从事煤矿机电设备智能检测与控制研究,E-mail: zhangxh@xust.edu.cn,https://orcid.org/0000-0002-5216-1362
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张旭辉
李语阳
杨文娟
张超
郑西利
麻兵

引用本文:

张旭辉,李语阳,杨文娟,张超,郑西利,麻兵. 基于改进滑模控制的悬臂式掘进机轨迹跟踪技术[J]. 工程设计学报, 2024, 31(4): 491-501.

Xuhui ZHANG,Yuyang LI,Wenjuan YANG,Chao ZHANG,Xili ZHENG,Bing MA. Trajectory tracking technology for boom-type roadheader based on improved sliding mode control[J]. Chinese Journal of Engineering Design, 2024, 31(4): 491-501.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.219        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I4/491

图1  悬臂式掘进机几何模型
图2  悬臂式掘进机轨迹跟踪偏差模型
图3  悬臂式掘进机轨迹跟踪控制框图
图4  悬臂式掘进机轨迹跟踪仿真结构
参数数值参数数值
Δt/s0.001k125
Δ0.01k133
α10.03k217
α20.03k225
k117k233
表1  悬臂式掘进机轨迹跟踪仿真控制参数
图5  悬臂式掘进机直线轨迹跟踪仿真结果对比
图6  悬臂式掘进机圆弧轨迹跟踪仿真结果对比
图7  履带式机器人轨迹跟踪实验平台
图8  履带式机器人轨迹跟踪实验结果
时间/s横向偏差/m纵向偏差/m航向角偏差/(°)
0-0.30000
5-0.0910.0062.16
20-0.016-0.004-0.16
250.018-0.0071.85
370.0030.0010.21
表2  履带式机器人轨迹跟踪实验的部分数据
1 王国法,刘峰,孟祥军,等.煤矿智能化(初级阶段)研究与实践[J].煤炭科学技术,2019,47(8):1-36.
WANG G F, LIU F, MENG X J, et al. Research and practice on intelligent coal mine construction (primary stage)[J]. Coal Science and Technology, 2019, 47(8): 1-36.
2 雷孟宇,张旭辉,杨文娟,等.煤矿掘进装备视觉位姿检测与控制研究现状与趋势[J].煤炭学报,2021,46():1135-1148.
LEI M Y, ZHANG X H, YANG W J, et al. Current status and trend of research on visual pose detection and control of heading equipment in coal mines[J]. Journal of China Coal Society, 2021, 46(): 1135-1148.
3 张旭辉,杨文娟,薛旭升,等.煤矿远程智能掘进面临的挑战与研究进展[J].煤炭学报,2022,47(1):579-597.
ZHANG X H, YANG W J, XUE X S, et al. Challenges and developing of the intelligent remote control on roadheaders in coal mine[J]. Journal of China Coal Society, 2022, 47(1): 579-597.
4 杨健健,张强,王超,等.煤矿掘进机的机器人化研究现状与发展[J].煤炭学报,2020,45(8):2995-3005.
YANG J J, ZHANG Q, WANG C, et al. Status and development of robotization research on roadheader for coal mines[J]. Journal of China Coal Society, 2020, 45(8): 2995-3005.
5 张旭辉,刘永伟,毛清华,等.煤矿悬臂式掘进机智能控制技术研究及进展[J].重型机械,2018(2):22-27.
ZHANG X H, LIU Y W, MAO Q H, et al. Research and progress on intelligent control technology of boom-type roadheader in coal mine[J]. Heavy Machinery, 2018(2): 22-27.
6 马宏伟,王世斌,毛清华,等.煤矿巷道智能掘进关键共性技术[J].煤炭学报,2021,46(1):310-320.
MA H W, WANG S B, MAO Q H, et al. Key common technology of intelligent heading in coal mine roadway[J]. Journal of China Coal Society, 2021, 46(1): 310-320.
7 潘天宇,楼佩煌,朱立群,等.基于Backstepping的改进等速趋近律AGV滑模轨迹跟踪控制方法[J].计算机集成制造系统,2020,26(4):930-938.
PAN T Y, LOU P H, ZHU L Q, et al. Sliding mode AGV tracking control method based on improve constant speed approaching law and Backstepping[J]. Computer Integrated Manufacturing Systems, 2020, 26(4): 930-938.
8 姜立标,吴中伟.基于趋近律滑模控制的智能车辆轨迹跟踪研究[J].农业机械学报,2018,49(3):381-386.
JIANG L B, WU Z W. Sliding mode control for intelligent vehicle trajectory tracking based on reaching law[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 381-386.
9 李昆鹏,王孙安,郭子龙.一种移动机器人自适应轨迹跟踪控制算法研究[J].系统仿真学报,2008,20(10):2575-2578,2583.
LI K P, WANG S A, GUO Z L. Adaptive trajectory tracking control method of mobile robot[J]. Journal of System Simulation, 2008, 20(10): 2575-2578, 2583.
10 KANAYAMA Y, KIMURA Y, MIYAZAKI F, et al. A stable tracking control method for a non-holonomic mobile robot[C]//Proceedings IROS '91: IEEE/RSJ International Workshop on Intelligent Robots and Systems ' 91. Osaka, Nov. 3-5, 1991.
11 SUN S L. Designing approach on trajectory-tracking control of mobile robot[J]. Robotics and Computer-Integrated Manufacturing, 2005, 21(1): 81-85.
12 匡文龙,沈文龙,姬长英,等.农用履带机器人轨迹跟踪控制系统设计与试验[J].东北农业大学学报,2020,51(4):78-87.
KUANG W L, SHEN W L, JI C Y, et al. Design and experiment of trajectory tracking controller for agricultural tracked robot[J]. Journal of Northeast Agricultural University, 2020, 51(4): 78-87.
13 王明明,朱莹莹,张磊,等.麦克纳姆轮驱动的移动机器人自适应滑模控制器设计[J].西北工业大学学报,2018,36(4):627-635. doi:10.1051/jnwpu/20183640627
WANG M M, ZHU Y Y, ZHANG L, et al. An adaptive robust controller for a mobile robot driven by Mecanum wheels[J]. Journal of Northwestern Polytechnical University, 2018, 36(4): 627-635.
doi: 10.1051/jnwpu/20183640627
14 张敏骏,成荣,朱煜,等.倾斜巷道掘进机纠偏运动分析与控制研究[J].煤炭学报,2021,46():549-557.
ZHANG M J, CHENG R, ZHU Y, et al. Study on roadheader rectification running performance and control in the in-cline coalmine roadway[J]. Journal of China Coal Society, 2021, 46(): 549-557.
15 张旭辉,周创,张超,等.基于视觉测量的快速掘进机器人纠偏控制研究[J].工矿自动化,2020,46(9):21-26.
ZHANG X H, ZHOU C, ZHANG C, et al. Research on deviation correction control of rapid tunneling robot based on vision measurement[J]. Journal of Mine Automation, 2020, 46(9): 21-26.
16 QU Y Y, YANG T, LI T, et al. Path tracking of underground mining boom roadheader combining BP neural network and state estimation[J]. Applied Sciences, 2022, 12(10): 5165.
17 韩庆珏,刘少军.深海履带车的路径跟踪控制算法[J].中南大学学报(自然科学版),2015,46(2):472-478.
HAN Q J, LIU S J. Path tracking control algorithm of the deep sea tracked vehicle[J]. Journal of Central South University (Science and Technology), 2015, 46(2): 472-478.
18 刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407-418.
LIU J K, SUN F C. Research and development on theory and algorithms of sliding mode control[J]. Control Theory & Applications, 2007, 24(3): 407-418.
19 吴卫国,陈辉堂,王月娟.移动机器人的全局轨迹跟踪控制[J].自动化学报,2001,27(3):326-331.
WU W G, CHEN H T, WANG Y J. Global trajectory tracking control of mobile robots[J]. Acta Automatica Sinica, 2001, 27(3): 326-331.
20 高为炳.变结构控制理论基础[M].北京:中国科学技术出版社,1990:95-101.
GAO W B. Theoretical basis of variable structure control [M]. Beijing: China Science and Technology Press, 1990: 95-101.
21 南英,陈昊翔,杨毅,等.现代主要控制方法的研究现状及展望[J].南京航空航天大学学报,2015,47(6):798-810.
NAN Y, CHEN H X, YANG Y, et al. Primary methodologies of modern control: status and prospect[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(6): 798-810.
22 MARKS G, SHTESSEL Y, GRATT H, et al. Effects of high order sliding mode guidance and observers on hit-to-kill interceptions[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. San Francisco, Aug. 15-18, 2005.
23 闫茂德,贺昱曜,吴青云.移动机器人全局轨迹跟踪的自适应滑模控制[J].微电子学与计算机,2006,23(4):97-100.
YAN M D, HE Y Y, WU Q Y. Adaptive sliding mode control for the global trajectory tracking of mobile robots[J]. Microelectronics & Computer, 2006, 23(4): 97-100.
[1] 余乐,侯勇俊,赵永强,汪玉琪. 双异步电机驱动双质体振动系统同步滑模控制[J]. 工程设计学报, 2023, 30(5): 608-616.
[2] 李琦琦,徐向荣,张卉. 基于自适应神经网络的机械臂滑模轨迹跟踪控制[J]. 工程设计学报, 2023, 30(4): 512-520.
[3] 何育民,韩莹,周晶. 基于改进果蝇优化算法的塔机自适应滑模控制研究[J]. 工程设计学报, 2023, 30(3): 271-280.
[4] 张卉,朱永飞,刘雪飞,徐向荣. 基于模糊迭代Q-学习的冶金工业机器人轨迹跟踪控制研究[J]. 工程设计学报, 2022, 29(5): 564-571.
[5] 胡坤, 蒋庆楠, 季晨光, 杨健, 李飞. 基于改进ESO的磁悬浮系统模型参考滑模控制[J]. 工程设计学报, 2022, 29(1): 82-91.
[6] 张瑜, 王立新, 陈洪月, 毛君. 考虑间隙的叶片辊轧机轧辊调整机构滑模控制研究[J]. 工程设计学报, 2020, 27(5): 585-591.
[7] 秦永峰, 龚国芳, 王飞, 孙辰晨. 基于RBF神经网络的液黏调速离合器活塞位移控制器设计[J]. 工程设计学报, 2019, 26(5): 603-610.
[8] 周结华, 代冀阳, 周继强, 张孝勇. 面向大型机场草坪的割草机器人路径规划及轨迹跟踪控制研究[J]. 工程设计学报, 2019, 26(2): 146-152.
[9] 邓涛, 周豪, 李军营. PMSM馈能系统硬件在环仿真研究[J]. 工程设计学报, 2017, 24(4): 412-417.
[10] 姚灵灵,贺乃宝,高 倩,宋 伟. 四旋翼飞行器的新型自适应离散滑模控制[J]. 工程设计学报, 2015, 22(6): 602-606.
[11] 吕宽州,陈素霞,黄全振. 柔性机械臂的轨迹跟踪与振动模糊控制[J]. 工程设计学报, 2015, 22(1): 78-83.
[12] 张兵, 唐猛, 廖海洲. 基于负载观测的PMSM滑模抗扰动自适应控制[J]. 工程设计学报, 2013, 20(5): 427-433.