Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (5): 608-616    DOI: 10.3785/j.issn.1006-754X.2023.00.067
可靠性与保质设计     
双异步电机驱动双质体振动系统同步滑模控制
余乐1,2(),侯勇俊2,赵永强1,汪玉琪1
1.陕西理工大学 工程训练中心,陕西 汉中 723001
2.西南石油大学 机电工程学院,四川 成都 610500
Synchronous sliding mode control of double-mass vibration system driven by two asynchronous motors
Le YU1,2(),Yongjun HOU2,Yongqiang ZHAO1,Yuqi WANG1
1.Engineering Training Center, Shaanxi University of Technology, Hanzhong 723001, China
2.School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
 全文: PDF(2855 KB)   HTML
摘要:

针对2个异步电机安装在2个不同质体上的振动系统在部分参数条件下不能同步运转或同步相位差不满足设计要求的问题,提出采用主从控制结构和滑模控制算法对异步电机进行矢量控制,以使振动系统实现0或π相位差的同步运转。首先,基于拉格朗日方程建立了振动系统的运动微分方程,并推导了其固有频率的表达式。然后,设计了振动系统异步电机的控制器,并分别证明了其稳定性。最后,在MATLAB/Simulink环境中建立了振动系统的机电-控制仿真模型,开展了自同步和控制同步仿真并进行了对比。结果表明:所设计的控制器可使振动系统实现0或π相位差的同步运转。研究结果可为双异步电机驱动双质体振动系统的研制提供参考。

关键词: 异步电机双质体振动系统同步运转滑模控制    
Abstract:

Aiming at the problem that the vibration system with two asynchronous motors installed on two different mass bodies cannot run synchronously or the synchronous phase difference does not meet the design requirements under the condition of some parameters, the vector control for asynchronous motors is proposed by using master-slave control structure and sliding mode control algorithm, so that the vibration system can implement 0 or π phase difference synchronous operation. Firstly, the motion differential equations of the vibration system were established according to the Lagrange equation, and the natural frequency expressions were derived. Then, the controllers for asynchronous motors in the vibration system were designed and their stability was proved respectively. Finally, the electromechanical-control simulation model of the vibration system was established in MATLAB/Simulink environment, and the self-synchronization and control synchronization simulation were carried out and compared. The results showed that the designed controllers could make the vibration system implement 0 or π phase difference synchronous operation. The research results can provide reference for the development of double-mass vibration system driven by two asynchronous motors.

Key words: asynchronous motor    double-mass vibration system    synchronous operation    sliding mode control
收稿日期: 2023-03-31 出版日期: 2023-11-03
CLC:  TH 113  
基金资助: 国家自然科学基金资助项目(51074132);陕西省教育厅专项科研计划项目(21JK0557)
作者简介: 余 乐(1989—),男,陕西汉中人,工程师,博士生,从事机械系统动力学、振动利用与控制工程等研究,E-mail: len1166@126.com,https://orcid.org/0000-0001-5176-4105
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
余乐
侯勇俊
赵永强
汪玉琪

引用本文:

余乐,侯勇俊,赵永强,汪玉琪. 双异步电机驱动双质体振动系统同步滑模控制[J]. 工程设计学报, 2023, 30(5): 608-616.

Le YU,Yongjun HOU,Yongqiang ZHAO,Yuqi WANG. Synchronous sliding mode control of double-mass vibration system driven by two asynchronous motors[J]. Chinese Journal of Engineering Design, 2023, 30(5): 608-616.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.067        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I5/608

图1  双质体振动系统的动力学模型
参数量值
振动体质量M1M248.45 kg
振动体转动惯量Jz1Jz25 kg·m2
中间弹簧Y向刚度ky110~2 000 kN/m
下质体弹簧Y向刚度ky2500 kN/m
中间弹簧Y向阻尼fy110~2 000 N·s/m
下质体弹簧Y向阻尼fy2500 N·s/m
偏心转子质量mo1mo23 kg
偏心转子等效半径r1r20.02 m
异步电机转轴的转动惯量Jo1Jo20.01 kg·m2
表1  双质体振动系统的参数
参数量值
电压220 V
频率50 Hz
极对数2
转子的电阻0.54 Ω
定-转子互感0.13 H
定子电感0.20 H
转子电感0.20 H
表2  异步电机的参数
图2  异步电机的矢量控制原理
图3  不同弹簧刚度下双质体振动系统的相位差仿真结果
图4  ky1=443 kN/m时双质体振动系统的自同步仿真结果
图5  ky1=1 062 kN/m时双质体振动系统的自同步仿真结果
图6  ky1=443 kN/m时双质体振动系统的控制同步仿真结果
图7  ky1=1 062 kN/m时双质体振动系统的控制同步仿真结果
2 闻邦椿,刘树英,何勍.振动机械的理论与动态设计方法[M].北京:机械工业出版社,2001:307-312.
WEN B C, LIU S Y, HE Q. Theory and dynamic design method of vibration machinery[M]. Beijing: China Machine Press, 2001: 307-312.
3 闻邦椿,刘树英,陈照波,等.机械振动理论及应用[M].北京:高等教育出版社,2009:64-84.
WEN B C, LIU S Y, CHEN Z B, et al. Theory of mechanical vibration and its applications[M]. Beijing: Higher Education Press, 2009: 64-84.
4 阿尔卡季·皮科瓦夫斯基,迈克尔·罗森布拉姆,于尔根·库尔特斯.同步——非线性科学中的通用概念[M]. 高宏,胡琦琳,张朋波,等,译.北京:科学出版社,2018:1-20.
ARKADY P, MICHAEL R, JÜRGEN K. Synchronization: a universal concept in nonlinear sciences[M]. Translated by GAO H, HU Q L, ZHANG P B, et al. Beijing: Science Press, 2018: 1-20.
5 BLEKHMAN I I, FRADKOV A L, NIJMEIJER H, et al. On self-synchronization and controlled synchronization[J]. Systems & Control Letters, 1997, 31(5): 299-305.
6 BLEKHMAN I I, FRADKOV A L, TOMCHINA O P, et al. Self-synchronization and controlled synchronization: general definition and example design[J]. Mathematics and Computers in Simulation, 2002, 58(4/6): 367-384.
7 ZHANG X L, WEN B C, ZHAO C Y. Synchronization of three non-identical coupled exciters with the same rotating directions in a far-resonant vibrating system[J]. Journal of Sound and Vibration, 2013, 332(9): 2300-2317.
8 ZHANG X L, WEN B C, ZHAO C Y. Experimental investigation on synchronization of three co-rotating non-identical coupled exciters driven by three motors[J]. Journal of Sound and Vibration, 2014, 333(13): 2898-2908.
9 ZHANG X L, WEN B C, ZHAO C Y. Vibratory synchronization transmission of a cylindrical roller in a vibrating mechanical system excited by two exciters[J]. Mechanical Systems and Signal Processing, 2017, 96: 88-103.
10 DJANAN A A N, NBENDJO B R N. Effect of two moving non-ideal sources on the dynamic of a rectangular plate[J]. Nonlinear Dynamics, 2018, 92: 645-657.
11 DJANAN A A N, NBENDJO B R N, WOAFO P. Effect of self-synchronization of DC motors on the amplitude of vibration of a rectangular plate[J]. The European Physical Journal Special Topics, 2014, 223(4): 813-825.
1 李娟娟.聚氨酯高频振动筛的研制[J].塑料工业,2003(5): 48-51. doi:10.3321/j.issn:1005-5770.2003.05.016
LI J J. Development of high vibration frequency polyurethane screen[J]. China Plastics Industry, 2003(5): 48-51.
doi: 10.3321/j.issn:1005-5770.2003.05.016
12 贺斌,赵春雨,闻邦椿.双质体自同步振动系统的动力学耦合特性分析[J].振动工程学报,2016,29(3):521-531.
HE B, ZHAO C Y, WEN B C. Analysis of dynamic coupling characteristics for self-synchronization vibrating system with dual-mass[J]. Journal of Vibration Engineering, 2016, 29(3): 521-531.
13 ZHAO C Y, HE B, LIU J J, et al. Design method of dynamic parameters of a self-synchronization vibrating system with dual mass[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2018, 232(1): 3-20.
14 KONG X X, CHEN C Z, WEN B C. Composite synchronization of three eccentric rotors driven by induction motors in a vibrating system[J]. Mechanical Systems and Signal Processing, 2018, 102: 158-179.
15 KONG X X, ZHANG X L, CHEN X Z, et al. Phase and speed synchronization control of four eccentric rotors driven by induction motors in a linear vibratory feeder with unknown time-varying load torques using adaptive sliding mode control algorithm[J]. Journal of Sound and Vibration, 2016, 370: 23-42.
16 FANG P, WANG Y G, HOU Y J, et al. Synchronous control of multi-motor coupled with pendulum in a vibration system[J]. IEEE Access, 2020, 8: 51964-51975.
17 FANG P, WANG Y G, ZOU M, et al. Combined control strategy for synchronization control in multi-motor-pendulum vibration system[J]. Journal of Vibration and Control, 2022, 28(17/18): 2254-2267.
18 ZOU M, FANG P, HOU Y J, et al. Synchronization analysis of two eccentric rotors with double-frequency excitation considering sliding mode control[J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 92: 105458.
19 黄志龙,张众超,楚树坡,等.四激振器激励下振动机械-物料系统同步控制[J].振动、测试与诊断,2021,41(3):462-469.
HUANG Z L, ZHANG Z C, CHU S P, et al. Synchronous control of vibrating machinery–material system under excitation of four exciters[J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(3): 462-469.
20 HUANG Z L, SONG G Q, LI Y M, et al. Synchronous control of two counter-rotating eccentric rotors in nonlinear coupling vibration system[J]. Mechanical Systems and Signal Processing, 2019, 114: 68-83.
21 张康,王丽梅,方馨.基于耦合参数辨识的直驱H型平台反馈线性化解耦同步控制[J].中国电机工程学报,2022,42(5):1992-2000.
ZHANG K, WANG L M, FANG X. direct drive H-type platform feedback linearization decoupling synchronous control based on coupling parameter identification[J]. Proceedings of the CSEE, 2022, 42(5): 1992-2000.
22 张康,王丽梅.基于反馈线性化的永磁直线同步电机自适应动态滑模控制[J].电工技术学报,2021,36(19):4016-4024.
ZHANG K, WANG L M. Adaptive dynamic sliding mode control of permanent magnet linear synchronous motor based on feedback linearization[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4016-4024.
23 侯勇俊,余乐,方潘,等.双质体三机驱动振动系统同步特性数值模拟[J].系统仿真学报,2016,28(12):3066-3072.
HOU Y J, YU L, FANG P, et al. Numerical simulation on self-synchronization of double mass vibrating system with tri-exciter[J]. Journal of System Simulation, 2016, 28(12): 3066-3072.
24 陈坚.交流电机数学模型及调速系统[M].北京:国防工业出版社,1989:40-114.
CHEN J. Mathematical model and speed adjustment system of alternating motors[M]. Beijing: National Defense Industry Press, 1989: 40-114.
25 赵峰,罗雯,高锋阳,等.考虑滑模抖振和扰动补偿的永磁同步电机改进滑模控制[J].西安交通大学学报,2020,54(6):28-35. doi:10.7652/xjtuxb202006004
ZHAO F, LUO W, GAO F Y, et al. An improved sliding mode control for pmsm considering sliding mode chattering and disturbance compensation[J]. Journal of Xi’an Jiaotong University, 2020, 54(6): 28-35.
doi: 10.7652/xjtuxb202006004
[1] 何育民,韩莹,周晶. 基于改进果蝇优化算法的塔机自适应滑模控制研究[J]. 工程设计学报, 2023, 30(3): 271-280.
[2] 胡坤, 蒋庆楠, 季晨光, 杨健, 李飞. 基于改进ESO的磁悬浮系统模型参考滑模控制[J]. 工程设计学报, 2022, 29(1): 82-91.
[3] 张瑜, 王立新, 陈洪月, 毛君. 考虑间隙的叶片辊轧机轧辊调整机构滑模控制研究[J]. 工程设计学报, 2020, 27(5): 585-591.
[4] 秦永峰, 龚国芳, 王飞, 孙辰晨. 基于RBF神经网络的液黏调速离合器活塞位移控制器设计[J]. 工程设计学报, 2019, 26(5): 603-610.
[5] 邓涛, 周豪, 李军营. PMSM馈能系统硬件在环仿真研究[J]. 工程设计学报, 2017, 24(4): 412-417.
[6] 侯勇俊, 余乐, 方潘, 陈普春. 三激振器双质体振动系统自同步特性研究[J]. 工程设计学报, 2016, 23(1): 82-89.
[7] 姚灵灵,贺乃宝,高 倩,宋 伟. 四旋翼飞行器的新型自适应离散滑模控制[J]. 工程设计学报, 2015, 22(6): 602-606.
[8] 张兵, 唐猛, 廖海洲. 基于负载观测的PMSM滑模抗扰动自适应控制[J]. 工程设计学报, 2013, 20(5): 427-433.