Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (4): 446-455    DOI: 10.3785/j.issn.1006-754X.2022.00.040
建模、仿真、分析与决策     
强研磨性地层中PDC钻头井底热--固三场耦合研究
祝效华1(),李聪1,刘伟吉1(),谭宾2,徐文2
1.西南石油大学 机电工程学院,四川 成都 610500
2.中国石油天然气集团有限公司 川庆钻探工程有限公司,四川 广汉 618399
Study on bottom hole thermal-fluid-solid coupling of PDC bit in strong abrasive formation
Xiao-hua ZHU1(),Cong LI1,Wei-ji LIU1(),Bin TAN2,Wen XU2
1.School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
2.Chuanqing Drilling Engineering Co. , Ltd. , China National Petroleum Corporation, Guanghan 618399, China
 全文: PDF(3547 KB)   HTML
摘要:

PDC(polycrystalline diamond compact, 聚晶金刚石复合片)钻头在强研磨性地层中破岩时,其钻齿在刮切破碎岩石的同时与岩屑、岩石剧烈摩擦,产生的局部高温加快了钻齿的磨损失效,这会极大地缩短整个钻头的使用寿命。因此,探究温度对PDC钻头磨损的影响并改进其水力结构对提升单个钻头的进尺深度和降低钻井经济成本有显著意义。为此,通过钻齿切削实验来验证其温度与磨损之间的关系,并在考虑井底钻井液流动状态及其与钻齿之间对流换热的基础上,建立了PDC钻头井底热?流?固三场耦合模型,分析了井底钻井液与PDC钻头之间的相互作用,同时针对原有的PDC钻头水力结构提出了优化措施。结果表明:1)在钻齿切削过程中温升现象十分明显,说明温度是影响PDC钻头磨损的重要因素;2)PDC钻头井底流场呈热?流?固耦合状态,且钻井液流动状态对其钻齿换热的影响大,这为钻头水力结构的优化提供了方向;3)通过调整喷嘴的流量及角度等水力结构,降低了钻齿的平均温度,可有效改善PDC钻头的磨损情况。研究结果对强研磨性地层中钻头的优化设计有重要指导意义。

关键词: 强研磨性地层钻头破岩温度磨损流场    
Abstract:

When the PDC (polycrystalline diamond compact) bit breaks rock in the strong abrasive formation, its drill teeth rub violently with cuttings and rocks while scraping and breaking the rock, and the generated local high temperature accelerates the wear failure of drill teeth, which will greatly shorten the service life of the whole bit. Therefore, exploring the influence of temperature on PDC bit wear and improving its hydraulic structure is of great significance to enhance the footage depth of a single bit and reduce the drilling cost. To this end, the relationship between temperature and wear was verified through drill tooth cutting experiment, and the PDC bit bottom hole thermal-fluid-solid coupling model was established on the basis of considering the flow state of bottom hole drilling fluid and the convective heat transfer between the drilling fluid and the drill teeth, and then the interaction between the bottom hole drilling fluid and the PDC bit was analyzed. At the same time, optimization measures for the hydraulic structure of the original PDC bit were proposed. The results showed that: 1) the phenomenon of temperature rise was very obvious in the cutting process of drill teeth, which indicated that temperature was an important factor affecting the wear of PDC bit; 2) the bottom hole flow field of PDC bit was in the state of thermal-fluid-solid coupling, and the flow state of drilling fluid had a great influence on the heat transfer of its drill teeth, which provided a optimization direction for the hydraulic structure of the PDC bit; 3) by adjusting the hydraulic structure such as the flow and angle of the nozzle, the average temperature of drill teeth was reduced, and the wear of PDC bit could be effectively improved. The research results have important guiding significance for the optimal design of drill bits in strong abrasive formations.

Key words: strong abrasive formation    rock breaking by bit    temperature    wear    flow field
收稿日期: 2021-08-17 出版日期: 2022-09-05
CLC:  TE 9  
基金资助: 国家自然科学基金资助项目(52004229);中国石油?西南石油大学创新联合体科技合作项目(2020CX040301)
通讯作者: 刘伟吉     E-mail: Zxhth113@163.com;lwj2017_swpu@163.com
作者简介: 祝效华(1978—),男,山东菏泽人,教授,博士,从事管柱力学与井下工具设计研究,E-mail:Zxhth113@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
祝效华
李聪
刘伟吉
谭宾
徐文

引用本文:

祝效华,李聪,刘伟吉,谭宾,徐文. 强研磨性地层中PDC钻头井底热--固三场耦合研究[J]. 工程设计学报, 2022, 29(4): 446-455.

Xiao-hua ZHU,Cong LI,Wei-ji LIU,Bin TAN,Wen XU. Study on bottom hole thermal-fluid-solid coupling of PDC bit in strong abrasive formation[J]. Chinese Journal of Engineering Design, 2022, 29(4): 446-455.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.040        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I4/446

图1  PDC钻头喷嘴射流区域示意
图2  钻齿切削实验装置
图3  切削过程中钻齿的磨损情况
图4  切削过程中钻齿的齿顶温度和磨损弦长
图5  PDC钻头井底热-流-固三场耦合模型建立过程
网格数量/个54万72万112万178万
某点温度/℃167.19169.76171.65170.09
表1  PDC钻头井底热‒流‒固三场耦合模型网格无关性验证结果
材料

密度/

(g/cm3)

热导率/

(W/(m·℃))

比热容/

(J/(kg·℃))

PDC3.51543790
WC-Co15.00100230
7.8948450
表2  PDC钻头材料参数
图6  PDC钻头1号喷嘴截面速度分布云图
图7  PDC钻头井底压力云图及速度矢量图
图8  1号刀翼各钻齿表面的钻井液平均流速及其与钻井液之间传递的热量
图9  不同时刻的PDC钻头温度分布云图
图10  优化前后PDC钻头各喷嘴的流量对比
图11  优化前后PDC钻头表面的钻井液流速对比
刀翼钻齿平均温度温度差
优化前优化后
1号1167.902172.551-4.649
2167.985171.284-3.299
3168.078163.6434.435
4170.823156.38714.436
5172.996159.44113.555
6167.513148.52718.986
7136.651126.869.791
2号1168.640159.2569.384
2162.542151.64310.899
3158.731149.6569.075
4155.094143.47811.616
5131.712123.6178.095
3号1167.027171.513-4.486
2164.193163.8580.335
3171.063160.67310.390
4171.869153.23718.632
5170.680151.48919.191
6160.719144.44216.277
7119.863109.79210.071
4号1165.547160.2655.282
2154.992148.5236.469
3157.978154.1053.873
4148.514143.7474.767
5号1157.227147.06910.158
2161.703153.6728.031
3175.257166.3428.915
4165.577150.51915.058
表3  优化前后PDC钻头各钻齿的平均温度对比 (℃)
1 潘军,王敏生,光新军.PDC钻头新进展及发展思考[J].石油机械,2016,44(11):5-13. doi:10.16082/j.cnki.issn.1001-4578.2016.11.002
PAN Jun, WANG Min-sheng, GUANG Xin-jun. New progress and future development of PDC bit[J]. China Petroleum Machinery, 2016, 44(11): 5-13.
doi: 10.16082/j.cnki.issn.1001-4578.2016.11.002
2 王红波,刘娇鹏,鲁鹏飞,等.PDC钻头发展与应用概况[J].金刚石与磨料磨具工程,2011,31(4):74-78. doi:10.3969/j.issn.1006-852X.2011.04.017
WANG Hong-bo, LIU Jiao-peng, LU Peng-fei, et al. General situations of development and application of PDC bits[J]. Diamond & Abrasives Engineering, 2011, 31(4): 74-78.
doi: 10.3969/j.issn.1006-852X.2011.04.017
3 庄林林.适合四川须家河组强研磨性硬地层的高效钻头研究[D].青岛:中国石油大学(华东),2011:6-13.
ZHUANG Lin-lin. Study on high efficient bit for Sichuan Xujiahe group hard and abrasive formation[D]. Qingdao: China University of Petroleum (East China), 2011: 6-13.
4 孙秀梅,王建兴,李凯,等.温度对金刚石钻头质量的影响和控制措施分析[J].地质装备,2016,17(2):18-23. doi:10.3969/j.issn.1009-282X.2016.02.017
SUN Xiu-mei, WANG Jian-xing, LI Kai, et al. Influence of temperature on quality of diamond bit and analysis of control measures[J]. Equipment for Geotechnical Engineering, 2016, 17(2): 18-23.
doi: 10.3969/j.issn.1009-282X.2016.02.017
5 周琴,张在兴,张凯,等.钻头切削齿破碎岩石的温度变化试验及机理分析[J].天然气工业,2020,40(10):102-110. doi:10.3787/j.issn.1000-0976.2020.10.012
ZHOU Qin, ZHANG Zai-xing, ZHANG Kai, et al. Temperature variation tests and mechanism analysis of rock breaking by bit cutters[J]. Natural Gas Industry, 2020, 40(10): 102-110.
doi: 10.3787/j.issn.1000-0976.2020.10.012
6 张在兴,周琴,张凯,等.岩石切削深度对切削齿温度分布的影响分析[J].煤炭学报,2019,44(S2):492-501. doi:10.13225/j.cnki.jccs.2019.0949
ZHANG Zai-xing, ZHOU Qin, ZHANG Kai, et al. Analysis of the influence of rock cutting depth on the temperature distribution of cutter[J]. Journal of China Coal Society, 2019, 44(S2): 492-501.
doi: 10.13225/j.cnki.jccs.2019.0949
7 GAO Ming-yang, ZHANG Kai, ZHOU Qin, et al. Numerical investigations on the effect of ultra-high cutting speed on the cutting heat and rock-breaking performance of a single cutter[J]. Journal of Petroleum Science and Engineering, 2020, 190: 107120. doi:10.1016/j.petrol. 2020.107120
doi: 10.1016/j.petrol. 2020.107120
8 李晓红,杨晓峰,卢义玉,等.水射流辅助硬质合金钻头切割岩石过程的刀具温度分析[J].煤炭学报,2010,35(5):844-849. doi:10.13225/j.cnki.jccs.2010.05.010
LI Xiao-hong, YANG Xiao-feng, LU Yi-yu, et al. Temperature analysis of cemented carbide drill cutting rock associated with water jet[J]. Journal of China Coal Society, 2010, 35(5): 844-849.
doi: 10.13225/j.cnki.jccs.2010.05.010
9 管志川,陈庭根,刘希圣.PDC钻头水力结构研究进展[J].中国石油大学学报(自然科学版),1994,18(6):136-142.
GUAN Zhi-chuan, CHEN Ting-gen, LIU Xi-sheng. Review of studies of PDC bit hydraulic configurations[J]. Journal of China University of Petroleum(Edition of Natural Science), 1994, 18(6): 136-142.
10 MOSLEMI A A, RAHMANI R, GRAHAM R, et al. Hydraulic design of shale drill bit using an integrated numerical and experimental approach[C]//SPE/IADC Drilling Conference and Exhibition, London, Mar. 17-19, 2015. doi:10.2118/173038-MS
doi: 10.2118/173038-MS
11 张健,黄晨光.三维瞬态方形管流的热流固耦合数值模拟[J].工程力学,2010,27(6) :232-239.
ZHANG Jian, HUANG Chen-guang. Numerical simulation of 3-D transient thermo-fluid-solid coupled flow in a rectangular channel[J]. Engineering Mechanics, 2010, 27(6): 232-239.
12 张仂,谷芳.基于计算流体力学热流固耦合仿真的换热器折流板结构优化[J].石油化工,2012,41(6):682-687. doi:10.3969/j.issn.1000-8144.2012.06.012
ZHANG Le, GU Fang. Structure optimization for heat exchanger baffle based on computational fluid dynamics simulation of thermal-fluid-structure coupling[J]. Petrochemical Technology, 2012, 41(6): 682-687.
doi: 10.3969/j.issn.1000-8144.2012.06.012
13 李迎,陈红岩,俞小莉.流固耦合仿真技术在发动机稳态传热计算中的应用[J].内燃机工程,2007,28(4):19-22,27. doi:10.3969/j.issn.1000-0925.2007.04.005
LI Ying, CHEN Hong-yan, YU Xiao-li. Application of liquid-solid coupled numerical simulation method in steady heat transfer calculation of an engine[J]. Chinese Internal Combustion Engine Engineering, 2007, 28(4): 19-22, 27.
doi: 10.3969/j.issn.1000-0925.2007.04.005
14 王芳.PDC钻头井底流场模拟平台开发与应用[D].成都:西南石油大学,2017:12-14. doi:10.36909/jer.8485
WANG Fang. Development and application of PDC bit bottom hole flow field simulation platform[D]. Chengdu: Southwest Petroleum University, 2017: 12-14.
doi: 10.36909/jer.8485
15 余金伟,冯晓锋.计算流体力学发展综述[J].现代制造技术与装备,2013(6):25-26,28. doi:10.16107/j.cnki.mmte.2013.06.023
YU Jin-wei, FENG Xiao-feng. CFD development review[J]. Modern Manufacturing Technology and Equipment, 2013(6): 25-26, 28.
doi: 10.16107/j.cnki.mmte.2013.06.023
16 WATSON G R, BARTON N A. Using new comtutational fluid dynamic techniques to improve PDC bit performance[C]// 1997 SPE/IADC Drilling Conference, Amsterdam, Mar. 4-6, 1997. doi:10.2118/37580-MS
doi: 10.2118/37580-MS
17 温诗铸.材料磨损研究的进展与思考[J].摩擦学学报,2008,28(1):1-5. doi:10.3321/j.issn:1004-0595.2008.01.001
WEN Shi-zhu. Research progress on wear of materials[J]. Tribology, 2008, 28(1): 1-5.
doi: 10.3321/j.issn:1004-0595.2008.01.001
18 李季阳.PDC切削齿的摩擦磨损机理及钻井参数的优化控制研究[D].北京:北京科技大学,2016:75-80.
LI Ji-yang. Research on fiction and wear mechanism of PDC cutter and optional control of drilling parameters[D]. Beijing: University of Science and Tchnology Beijing, 2016: 75-80.
19 李勇.PDC钻头切削齿破岩过程热分析与仿真[D].成都:西南石油大学,2012:42-49.
LI Yong. Thermal analysis and simulation of the rock-breaking process of the cutters of PDC bit[D]. Chengdu: Southwest Petroleum University, 2012: 42-49.
20 GLOWKA D A. The thermal response of rock to friction in the drag cutting process[J]. Journal of Structural Geology, 1989, 11(7): 919-931. doi:10.1016/0191-8141(89)90108-9
doi: 10.1016/0191-8141(89)90108-9
21 杨晓峰,李晓红,卢义玉.岩石钻掘过程中的钻头温度分析[J].中南大学学报(自然科学版),2011,42(10):3164-3169.
YANG Xiao-feng, LI Xiao-hong, LU Yi-yu. Temperature analysis of drill bit in rock drilling[J]. Journal of Central South University (Science and Technology), 2011, 42(10): 3164-3169.
22 林敏,杨迎新.PDC钻头切削几何学理论与方法[C]//全国成矿理论与深部找矿新技术新方法交流研讨会,西宁:中国国土经济学会,2009:305-308.
LIN Min, YANG Ying-xin. Mathematic theory and computational method of PDC bit cutting geometry[C]//National Symposium on Metallogenic Theory and New Technology and Method of Deep Prospecting, Xining: China Society of Land Economics, 2009: 305-308.
23 GARCIA-GAVITO D, AZAR J J. Proper nozzle location, bit profile, and cutter arrangement affect PDC-bit performance significantly[J]. SPE Drilling & Completion, 1994, 9(3): 167-175. doi:10.2118/20415-pa
doi: 10.2118/20415-pa
24 王福军.计算流体动力学分析[M].北京:清华大学出版社,2004:5-8.
WANG Fu-jun. Computational fluid dynamics analysis[M]. Beijing: Tsinghua University Press, 2004: 5-8.
25 帕坦卡.传热与流体流动的数值计算[M].张政,译.北京:科学出版社,1984:45-53.
PATANKAR. Numerical heat transfer and fluid flow[M]. Translated by ZHANG Zheng. Beijing: Science Press, 1984: 45-53.
26 TSAI Y C, LIU F B, SHEN P T. Investigations of the pressure drop and flow distribution in a chevron-type plate heat exchanger[J]. International Communications in Heat and Mass Transfer, 2009, 36(6): 574-578. doi:10.1016/j.icheatmasstransfer.2009.03.013
doi: 10.1016/j.icheatmasstransfer.2009.03.013
27 任志安,郝点,谢红杰.几种湍流模型及其在Fluent中的应用[J].化工装备技术,2009,30(2):38-40,44. doi:10.3969/j.issn.1007-7251.2009.02.013
REN Zhi-an, HAO Dian, XIE Hong-jie. Several turbulence models and their application in Fluent[J]. Chemical Equipment Technology, 2009, 30(2): 38-40, 44.
doi: 10.3969/j.issn.1007-7251.2009.02.013
28 GUO Z Y, LI D Y, WANG B X. A novel concept for convective heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 1998, 41(14): 2221-2225. doi:10.1016/s0017-9310(97)00272-x
doi: 10.1016/s0017-9310(97)00272-x
29 过增元.对流换热的物理机制及其控制:速度场与热流场的协同[J].科学通报,2000,45(19):2118-2122. doi:10.3321/j.issn:0023-074X.2000.19.020
GUO Zeng-yuan. Physical mechanism and control of convective heat transfer: synergy of velocity field and heat flow field[J]. Chinese Science Bulletin, 2000, 45(19): 2118-2122.
doi: 10.3321/j.issn:0023-074X.2000.19.020
[1] 李琴,雷雨薇,孙浩翔,代茂林,陈科. 基于EDEM-Fluent耦合的激光机械钻头井底流场与排屑性能研究[J]. 工程设计学报, 2023, 30(4): 521-530.
[2] 张毅,熊思阳,钟思鹏,熊子杰,杨强. 密封面磨损对V形组合密封圈性能的影响[J]. 工程设计学报, 2023, 30(2): 237-243.
[3] 李毅,陈国华,夏铭,李波. 电主轴冷却系统设计与仿真优化[J]. 工程设计学报, 2023, 30(1): 39-47.
[4] 刘江,肖正明,张龙隆,刘卫标. 考虑摆线轮磨损的RV减速器传动精度可靠性分析与参数优化[J]. 工程设计学报, 2022, 29(6): 739-747.
[5] 唐绍禹,吴杰,张辉,邓兵兵,黄禹铭,黄浩. 多极式磁流变离合器温度场仿真与实验研究[J]. 工程设计学报, 2022, 29(4): 484-492.
[6] 卢进南,刘扬,王连捷,杨润坤,丁振志. 基于改进Mask Scoring R-CNN的铲齿磨损检测研究[J]. 工程设计学报, 2022, 29(3): 309-317.
[7] 马超群,张凯,柴麟,刘宝林,周琴. 机械式自动垂直钻具执行机构内部流场规律研究[J]. 工程设计学报, 2022, 29(3): 384-393.
[8] 樊霄岳, 刘启, 官威, 朱云, 陈苏琳, 沈彬. 电磁微锻机构热效应模拟与实验研究[J]. 工程设计学报, 2022, 29(1): 66-73.
[9] 钟良春, 况雨春, 舒峰, 张聪. 考虑压力与温度影响的螺杆马达过盈量设计方法[J]. 工程设计学报, 2021, 28(3): 321-328.
[10] 刘舒沁, 刘若晨, 孙见忠, 张进武. 风电齿轮箱磨损状态静电在线监测方法研究[J]. 工程设计学报, 2021, 28(2): 163-169.
[11] 邓晓帆, 任成祖, 陈洋, 陈光, 蔡智杰, 贺英伦. 基于摩擦磨损实验的双盘直槽研磨方法的研具选材研究[J]. 工程设计学报, 2020, 27(6): 720-728.
[12] 王超, 孙文旭, 马晓静, 陈纪旸, 栾义忠, 马思乐. 基于模糊控制的HVPE生长设备温度控制系统[J]. 工程设计学报, 2020, 27(6): 765-770.
[13] 马亚超, 张鹏, 黄志强, 牛世伟, 谢豆, 邓嵘. 变温变载影响下PDC钻头的动态磨损趋势预测[J]. 工程设计学报, 2020, 27(5): 625-635.
[14] 刘若晨, 徐成, 王奎洋, 王益民, 孙见忠. 新型磨损区域静电传感器特性参数研究[J]. 工程设计学报, 2020, 27(5): 645-653.
[15] 武聪魁, 何柏岩, 袁鹏飞. 计及金属铰链的环形可展天线热-结构分析[J]. 工程设计学报, 2020, 27(3): 349-356.